• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 17
  • 14
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dermal and respiratory exposure to nickel in a packaging section of a base metal refinery / Hendrik Johannes Claassens

Claassens, Hendrik Johannes January 2013 (has links)
Nickel is one of the most commonly known sensitisers and has been classified by the International Agency for Research on Cancer (IARC) as a possible carcinogen to humans (group 2B). Workers at a South African base metal refinery packaging area are potentially exposed to many hazardous chemicals that include nickel. Aims and Objectives: The aim and objectives of this study were to assess dermal and respiratory exposure of workers exposed to nickel in a packaging section at a South African base metal refinery and to assess the change in skin barrier function during a work shift by measuring percentage change in trans epidermal water loss (TEWL), skin hydration and skin surface pH. Skin health was established with a skin questionnaire. Surfaces that workers may come into contact with were also assessed. Method: Respiratory and dermal exposure assessment was done concurrently. Respiratory exposure was assessed and analysed by using the National Institute for Occupational Safety and Health (NIOSH) method 7300. The Institute of Occupational Medicine (IOM) inhalable aerosol sampler was used for personal air sampling. The TEWL index, skin hydration and skin surface pH of the index finger, palm, forearm and forehead were measured before and at the end of the shift with a Derma Measurement Unit, EDS 12 and Skin-pH-Meter® pH 905. These measurements were reported as percentage change in skin barrier function during the shift. Dermal exposure samples were collected with Ghostwipes™ from the index finger and palm of the dominant hand before, during and at the end of the shift, while samples from the forearm and forehead were only collected before and after the shift. Surface sampling was collected and all wipes were analysed for nickel according the NIOSH method 9102, using inductively coupled plasma-atomic emission spectrometry. Results: Respiratory exposure for the whole group of workers in a packaging section was well below the eight hour Time Weighted Average (TWA) respiratory Occupational Exposure Limit (OEL) of 0.5 mg m-3 for nickel. Dermal nickel loading was detected for all the job categories on all the anatomical areas even before the shift had commenced. During the shift more nickel was detected on the index finger and palm of the hand. Levels on the forearm and forehead were much lower in comparison with the index finger and the palm of the hand. Workplace surfaces, which workers may come into contact with on a daily basis, were also contaminated with nickel. Forklift drivers showed high exposure on the index finger and palm of their hands, and this can be attributed to them not wearing any gloves for hand protection. An increase in percentage change for TEWL was seen for most of the job categories on all anatomical areas measured during the shift. Percentage change in skin surface pH and skin hydration varied among job categories. Conclusion: The research addressed the problem statement, with the stated objectives. It was hypothesised that workers at a packaging section of a base metal refinery are exposed to quantifiable levels of nickel through the dermal exposure route. The hypothesis was accepted and control measures together with future studies were recommended. The results confirmed that all workers at a base metal refinery are exposed to quantifiable levels of nickel through the dermal exposure route. Dermal exposure was evident on all anatomical areas for all job categories before the shift had commenced. Personal protective equipment was provided to all employees, but forklift drivers did not wear gloves when operating the forklift. Respirable exposure to nickel was below the OEL. Changes in TEWL and to a lesser extent skin hydration, suggest a deterioration in skin barrier function during the shift. Forklift drivers as well as plate washers may be the highest risk job categories in developing allergic contact dermatitis. Several measures to lower respiratory and dermal exposure to nickel are also recommended. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
12

Dermal exposure and skin barrier function of workers exposed to copper sulphate at a chemical industry / Christa Steynberg

Steynberg, Christa January 2013 (has links)
Copper exposure is known to be a rare cause of skin irritation and allergic reactions and according to our knowledge occupational dermal exposure to copper sulphate has not yet been characterised. As a result, the objectives of this study were to assess the dermal exposure of workers at a chemical industry to copper sulphate and to characterise the change in the their skin barrier function from before to the end of the work shift, as the skin’s barrier function can greatly influence the permeation of chemical substances. Methods: The change in skin barrier function of reactor workers, crystal and powder packaging workers at the chemical industry were assessed by measuring their dominant hand’s palm, back and wrist as well as their foreheads’ skin hydration, transepidermal water loss (TEWL) and skin surface pH before and at the end of the work shift. Commercial GhostwipesTM were used to collect dermal exposure samples from the same four anatomical areas before and at the end of the shift. Additional dermal exposure samples were collected from the palm and back of hand, prior to breaks 1 and 2. Surface wipe sampling was also conducted at several work and recreational areas of the chemical industry. Wipe samples were analysed by an accredited analytical laboratory, according to NIOSH method 9102 by means of Inductively Coupled Plasma-Atomic Emission Spectrometry. Results: Changes in skin hydration of the workers and anatomical areas at the end of the work shift were highly variable, while in general TEWL increased and skin surface pH decreased. Copper was collected from the skin of all workers before the shift commenced, and dermal exposure increased throughout the work shift. All of the work and recreational areas from which surface samples were taken, were contaminated with copper. Conclusion: As a result of intermittent use of inadequate protective gloves and secondary skin contact with contaminated surfaces and work clothing, workers at the chemical industry are exposed to copper sulphate via the dermal exposure route. The decrease in the workers’ skin barrier function (increased TEWL) and skin surface pH is most likely the result of their dermal exposure to sulphuric acid, and may lead to enhanced dermal penetration. The low account of skin irritation or reaction incidences among these workers is contributed to their ethnicity as well as to the low sensitisation potential of copper. Recommendations on how to lower dermal exposure and improve workers’ skin barrier function are made. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
13

Dermal exposure to platinum group metals at a precious metal refinery : a pilot study / Marilize Barnard

Barnard, Marilize January 2014 (has links)
Background: Workers in a platinum group metals (PGMs) refinery are potentially exposed to various precious metals (iridium, osmium, palladium, platinum, rhodium and ruthenium) and their metal-salt compounds which may cause rhinitis, asthma, contact urticaria and conjunctivitis. Some cases revealed that sensitisation occurred in employees where it was not possible to detect any airborne soluble platinum or where the respiratory soluble platinum exposure was below the occupational exposure limit. It is unclear whether respiratory exposure or a combination of respiratory and dermal exposure may be involved in sensitisation and the possible elicitation of skin symptoms. Objectives: To determine if dermal exposure to PGMs took place during the refining process and in the administration area by using a removal method and to compare dermal exposure on the different anatomical areas and in two different working areas, Areas A and B for each of the PGMs. Methods: Dermal exposure samples were collected with a removal method using GhostwipesTM. The samples were collected from the palm of the hands, the wrists and the necks of the workers, before the shift started, before tea time, before lunch time and after the shift ended. The skin wipes were analysed for the PGMs (iridium, osmium, palladium, platinum, ruthenium and rhodium) according to Methods for the Determination of Hazardous Substances (MDHS) method 46/2, using Inductively Coupled Plasma-Mass Spectrometry. Results: No published data is available on occupational dermal exposure to PGMs in a precious metals refinery. This study proved that dermal exposure to PGMs in the refinery took place and was quantified. The PGM dermal exposure results in general, were very low (measured in nano grams), with platinum having the overall highest exposure. Exposure also occurred the most frequently during the last two intervals of the day, before lunch time and at the end of the shift. Exposure on all three the anatomical areas that were tested in the study, varied much with the palm of the hands having the highest exposure levels. There were also variations in exposure between areas A and B due to the fact that the processes in these two areas differ. Conclusions: It was confirmed that dermal exposure to PGMs took place at the precious metals refinery. The highest exposure took place before lunch time and towards the end of the shift. The metal to which the workers were exposed the most was platinum and the production area where the workers had the highest exposure to most of the metals was Area B. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2015
14

Dermal and respiratory exposure to nickel in a packaging section of a base metal refinery / Hendrik Johannes Claassens

Claassens, Hendrik Johannes January 2013 (has links)
Nickel is one of the most commonly known sensitisers and has been classified by the International Agency for Research on Cancer (IARC) as a possible carcinogen to humans (group 2B). Workers at a South African base metal refinery packaging area are potentially exposed to many hazardous chemicals that include nickel. Aims and Objectives: The aim and objectives of this study were to assess dermal and respiratory exposure of workers exposed to nickel in a packaging section at a South African base metal refinery and to assess the change in skin barrier function during a work shift by measuring percentage change in trans epidermal water loss (TEWL), skin hydration and skin surface pH. Skin health was established with a skin questionnaire. Surfaces that workers may come into contact with were also assessed. Method: Respiratory and dermal exposure assessment was done concurrently. Respiratory exposure was assessed and analysed by using the National Institute for Occupational Safety and Health (NIOSH) method 7300. The Institute of Occupational Medicine (IOM) inhalable aerosol sampler was used for personal air sampling. The TEWL index, skin hydration and skin surface pH of the index finger, palm, forearm and forehead were measured before and at the end of the shift with a Derma Measurement Unit, EDS 12 and Skin-pH-Meter® pH 905. These measurements were reported as percentage change in skin barrier function during the shift. Dermal exposure samples were collected with Ghostwipes™ from the index finger and palm of the dominant hand before, during and at the end of the shift, while samples from the forearm and forehead were only collected before and after the shift. Surface sampling was collected and all wipes were analysed for nickel according the NIOSH method 9102, using inductively coupled plasma-atomic emission spectrometry. Results: Respiratory exposure for the whole group of workers in a packaging section was well below the eight hour Time Weighted Average (TWA) respiratory Occupational Exposure Limit (OEL) of 0.5 mg m-3 for nickel. Dermal nickel loading was detected for all the job categories on all the anatomical areas even before the shift had commenced. During the shift more nickel was detected on the index finger and palm of the hand. Levels on the forearm and forehead were much lower in comparison with the index finger and the palm of the hand. Workplace surfaces, which workers may come into contact with on a daily basis, were also contaminated with nickel. Forklift drivers showed high exposure on the index finger and palm of their hands, and this can be attributed to them not wearing any gloves for hand protection. An increase in percentage change for TEWL was seen for most of the job categories on all anatomical areas measured during the shift. Percentage change in skin surface pH and skin hydration varied among job categories. Conclusion: The research addressed the problem statement, with the stated objectives. It was hypothesised that workers at a packaging section of a base metal refinery are exposed to quantifiable levels of nickel through the dermal exposure route. The hypothesis was accepted and control measures together with future studies were recommended. The results confirmed that all workers at a base metal refinery are exposed to quantifiable levels of nickel through the dermal exposure route. Dermal exposure was evident on all anatomical areas for all job categories before the shift had commenced. Personal protective equipment was provided to all employees, but forklift drivers did not wear gloves when operating the forklift. Respirable exposure to nickel was below the OEL. Changes in TEWL and to a lesser extent skin hydration, suggest a deterioration in skin barrier function during the shift. Forklift drivers as well as plate washers may be the highest risk job categories in developing allergic contact dermatitis. Several measures to lower respiratory and dermal exposure to nickel are also recommended. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
15

Dermal exposure and skin barrier function of workers exposed to copper sulphate at a chemical industry / Christa Steynberg

Steynberg, Christa January 2013 (has links)
Copper exposure is known to be a rare cause of skin irritation and allergic reactions and according to our knowledge occupational dermal exposure to copper sulphate has not yet been characterised. As a result, the objectives of this study were to assess the dermal exposure of workers at a chemical industry to copper sulphate and to characterise the change in the their skin barrier function from before to the end of the work shift, as the skin’s barrier function can greatly influence the permeation of chemical substances. Methods: The change in skin barrier function of reactor workers, crystal and powder packaging workers at the chemical industry were assessed by measuring their dominant hand’s palm, back and wrist as well as their foreheads’ skin hydration, transepidermal water loss (TEWL) and skin surface pH before and at the end of the work shift. Commercial GhostwipesTM were used to collect dermal exposure samples from the same four anatomical areas before and at the end of the shift. Additional dermal exposure samples were collected from the palm and back of hand, prior to breaks 1 and 2. Surface wipe sampling was also conducted at several work and recreational areas of the chemical industry. Wipe samples were analysed by an accredited analytical laboratory, according to NIOSH method 9102 by means of Inductively Coupled Plasma-Atomic Emission Spectrometry. Results: Changes in skin hydration of the workers and anatomical areas at the end of the work shift were highly variable, while in general TEWL increased and skin surface pH decreased. Copper was collected from the skin of all workers before the shift commenced, and dermal exposure increased throughout the work shift. All of the work and recreational areas from which surface samples were taken, were contaminated with copper. Conclusion: As a result of intermittent use of inadequate protective gloves and secondary skin contact with contaminated surfaces and work clothing, workers at the chemical industry are exposed to copper sulphate via the dermal exposure route. The decrease in the workers’ skin barrier function (increased TEWL) and skin surface pH is most likely the result of their dermal exposure to sulphuric acid, and may lead to enhanced dermal penetration. The low account of skin irritation or reaction incidences among these workers is contributed to their ethnicity as well as to the low sensitisation potential of copper. Recommendations on how to lower dermal exposure and improve workers’ skin barrier function are made. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
16

Investigation into the occurrence of the dinoflagellate, Ceratium hirundinella in source waters and the impact thereof on drinking water purification / van der Walt N.

Van der Walt, Nicolene January 2011 (has links)
The Ceratium species occurring in the Vaal River since 2000, was identified as Ceratium hirundinella (O.F. Müller) Dujardin as proposed by Van Ginkel et al (2001). Ceratium hirundinella is known to cause problems in drinking water purification and has been penetrating into the final drinking water of Rand Water since 2006. Ceratium hirundinella is associated with many other water purification problems such as disrupting of the coagulation and flocculation processes, blocking of sand filters and algal penetration into the drinking water. Ceratium hirundinella also produce fishy taste and odorous compounds and causes discolouration of the water. The aims of this study were to determine the main environmental factors which are associated with the bloom formation of C. hirundinella in the source water and to investigate the influence of C. hirundinella on the production of potable water. In order to optimise treatment processes and resolve problems associated with high C. hirundinella concentrations during the production of potable water, jar testing and chlorine exposure experiments were performed. Multivariate statistical analyses were performed to determine the main environmental variables behind C. hirundinella blooms. Ten years data (2000 - 2009) from the sampling point C–VRB5T in the Vaal River, (5 km upstream from the Barrage weir) were used for this investigation, because C. hirundinella occurred there frequently during the ten year period. In this study, it was found that C. hirundinella was favoured by high pH, Chemical Oxygen Demand (COD), orthophoshapte (PO4), and silica concentrations, as well as low turbidity and low dissolved inorganic nitrogen (DIN) concentrations. No correlation was found between C. hirundinella and temperature, suggesting that this alga does not occur during periods of extreme warm or extreme cold conditions, but most probably during autumn and spring. The results of the multivariate statistical analysis performed with historical data from Vaalkop dam, indicate that the dinoflagellate C. hirundinella seems to be favoured by low temperature and turbidity, and high DIN, Fe, Methyl–orange alkalinity, Cd, PO4, Conductivity, pH, hardness and SO4 concentrations. In order to optimise treatment processes such as coagulation, flocculation and sedimentation, jar testing experiments were performed to investigate different coagulant chemicals namely: cationic poly–electrolyte only, cationic poly–electrolyte in combination with slaked lime (CaO) and CaO in combination with activated silica. Water from four different sampling localities were chosen to perform the different jar testing experiments: 1) sampling point M–FOREBAY (in the Forebay, connecting the canal to the Zuikerbosch Purification plant) near Vereeniging due to its proximity to the Zuikerbosch treatment plant, 2) M–CANAL_VD (upstream from the inflow of the recovered water from Panfontein) to determine the influence of (if any) the recovered water from Panfontein on Forebay source water, 3) source water from Vaalkop Dam (M–RAW_VAALKOP) and 4) source water from Rietvlei Dam (water from both Vaalkop and Rietvlei Dams contained high concentrations of C. hirundinella at that time of sampling) to determine which coagulant chemical is the most effective in removing high concentrations of C. hirundinella cells during the production of drinking water. The jar testing experiments with Vaalkop Dam and Rietvlei Dam source water (rich with C. hirundinella) indicated that using cationic poly–electrolyte alone did not remove high concentrations of C. hirundinella efficiently. However, when CaO (in combination with cationic poly–electrolyte or activated silica) were dosed to Vaalkop Dam source water a significant decrease of C. hirundinella concentration was observed. This indicates that the C. hirundinella cells were “shocked or stressed” when exposed to the high pH of the CaO, rendering it immobile and thereby enhancing the coagulation and flocculation process. However, when 10 mg/L CaO in combination with poly–electrolyte was dosed to Rietvlei Dam source water the turbidity and chlorophyll–665 results indicated that this coagulant chemical procedure was ineffective in removing algal material from the source water. The jar testing experiments using the cationic poly–electrolyte alone or cationic poly–electrolyte in combination with CaO on M–FOREBAY and M–CANAL_VD source water, showed a decrease in turbidity, chlorophyll–665 concentration, and total algal biomass, with an increase of coagulant chemical. When CaO in combination with activated silica was dosed, the inherent turbidity of the lime increased the turbidity of the Vaalkop Dam, M–FOREBAY and M–CANAL_VD source water to such an extent that it affected coagulation negatively, resulting in high turbidity values in the supernatant. Regardless of the turbidity values, the chlorophyll–665 concentration and total algal biomass (C. hirundinella specifically in Vaalkop Dam source water) decreased significantly when CaO was dosed in combination with activated silica. Therefore it was concluded that a cationic poly–electrolyte alone is a good coagulant chemical for the removal of turbidity, but when high algal biomass occur in the source water it is essential to add CaO to “stress” or “shock” the algae for the effective removal thereof. However, when CaO in combination with activated silica was dosed to Rietvlei Dam source water a decrease in turbidity and chlorophyll–665 concentration was found with an increasing coagulant chemical concentration. These results confirm the fact that coagulant chemicals may perform differently during different periods of the year when water chemistry changes and that certain coagulant chemicals may never be suitable to use for certain source waters. For the effective removal of algae during water purification, it is recommended that cationic poly–electrolyte in combination with CaO are used as coagulant chemical at the Zuikerbosch Water Purification Plant. Turbidity is not a good indication of algal removal efficiency during jar testing experiments. If problems with high algal concentrations in the source water are experienced it is advisable to also determine the chlorophyll–665 concentrations of the supernatant water during the regular jar testing experiments, since it will give a better indication of algal removal. Chlorine exposure experiments were performed on water from Vaalkop Dam (M–RAW_VAALKOP) and Rietvlei Dam source water, to determine the possibility of implementing pre– or intermediate chlorination with the aim to render the cells immobile for more effective coagulation. The chlorine exposure experiments with Vaalkop Dam and Rietvlei Dam source water showed similar results. The chlorine concentration to be dosed as part of pre– or intermediate chlorination will differ for each type of source water as the chemical and biological composition of each water body are unique. When the effect of chlorine on the freshwater dinoflagellate C. hirundinella was investigated, it was found that the effective chlorine concentration where 50 % of Ceratium cells were rendered immobile (EC50) was approximately 1.16 mg/L for Vaalkop Dam source water. For the source water sampled from Rietvlei Dam, it was found that the EC50 was at approximately 0.87 mg/L. Results of analyses to determine the organic compounds in the water after chlorination revealed that an increase in chlorine concentration resulted in increase in total organic carbon concentration (TOC), as well as a slight increase in MIB and trihalomethanes (CHCl3). Pre– or intermediate chlorination seem to be an effective treatment option for the dinoflagellate C. hirundinella to be rendered immobile and thereby assisting in its coagulation process. The use of pre– or intermediate chlorination to effectively treat source waters containing high concentrations of C. hirundinella is a viable option to consider. However, the organic compounds in the water should be monitored and the EC50 value for each source water composition should be determined carefully as to restrict cell lysis and subsequent release of organic compounds into the water. / Thesis (M.Sc. (Environmental Science))--North-West University, Potchefstroom Campus, 2012.
17

Investigation into the occurrence of the dinoflagellate, Ceratium hirundinella in source waters and the impact thereof on drinking water purification / van der Walt N.

Van der Walt, Nicolene January 2011 (has links)
The Ceratium species occurring in the Vaal River since 2000, was identified as Ceratium hirundinella (O.F. Müller) Dujardin as proposed by Van Ginkel et al (2001). Ceratium hirundinella is known to cause problems in drinking water purification and has been penetrating into the final drinking water of Rand Water since 2006. Ceratium hirundinella is associated with many other water purification problems such as disrupting of the coagulation and flocculation processes, blocking of sand filters and algal penetration into the drinking water. Ceratium hirundinella also produce fishy taste and odorous compounds and causes discolouration of the water. The aims of this study were to determine the main environmental factors which are associated with the bloom formation of C. hirundinella in the source water and to investigate the influence of C. hirundinella on the production of potable water. In order to optimise treatment processes and resolve problems associated with high C. hirundinella concentrations during the production of potable water, jar testing and chlorine exposure experiments were performed. Multivariate statistical analyses were performed to determine the main environmental variables behind C. hirundinella blooms. Ten years data (2000 - 2009) from the sampling point C–VRB5T in the Vaal River, (5 km upstream from the Barrage weir) were used for this investigation, because C. hirundinella occurred there frequently during the ten year period. In this study, it was found that C. hirundinella was favoured by high pH, Chemical Oxygen Demand (COD), orthophoshapte (PO4), and silica concentrations, as well as low turbidity and low dissolved inorganic nitrogen (DIN) concentrations. No correlation was found between C. hirundinella and temperature, suggesting that this alga does not occur during periods of extreme warm or extreme cold conditions, but most probably during autumn and spring. The results of the multivariate statistical analysis performed with historical data from Vaalkop dam, indicate that the dinoflagellate C. hirundinella seems to be favoured by low temperature and turbidity, and high DIN, Fe, Methyl–orange alkalinity, Cd, PO4, Conductivity, pH, hardness and SO4 concentrations. In order to optimise treatment processes such as coagulation, flocculation and sedimentation, jar testing experiments were performed to investigate different coagulant chemicals namely: cationic poly–electrolyte only, cationic poly–electrolyte in combination with slaked lime (CaO) and CaO in combination with activated silica. Water from four different sampling localities were chosen to perform the different jar testing experiments: 1) sampling point M–FOREBAY (in the Forebay, connecting the canal to the Zuikerbosch Purification plant) near Vereeniging due to its proximity to the Zuikerbosch treatment plant, 2) M–CANAL_VD (upstream from the inflow of the recovered water from Panfontein) to determine the influence of (if any) the recovered water from Panfontein on Forebay source water, 3) source water from Vaalkop Dam (M–RAW_VAALKOP) and 4) source water from Rietvlei Dam (water from both Vaalkop and Rietvlei Dams contained high concentrations of C. hirundinella at that time of sampling) to determine which coagulant chemical is the most effective in removing high concentrations of C. hirundinella cells during the production of drinking water. The jar testing experiments with Vaalkop Dam and Rietvlei Dam source water (rich with C. hirundinella) indicated that using cationic poly–electrolyte alone did not remove high concentrations of C. hirundinella efficiently. However, when CaO (in combination with cationic poly–electrolyte or activated silica) were dosed to Vaalkop Dam source water a significant decrease of C. hirundinella concentration was observed. This indicates that the C. hirundinella cells were “shocked or stressed” when exposed to the high pH of the CaO, rendering it immobile and thereby enhancing the coagulation and flocculation process. However, when 10 mg/L CaO in combination with poly–electrolyte was dosed to Rietvlei Dam source water the turbidity and chlorophyll–665 results indicated that this coagulant chemical procedure was ineffective in removing algal material from the source water. The jar testing experiments using the cationic poly–electrolyte alone or cationic poly–electrolyte in combination with CaO on M–FOREBAY and M–CANAL_VD source water, showed a decrease in turbidity, chlorophyll–665 concentration, and total algal biomass, with an increase of coagulant chemical. When CaO in combination with activated silica was dosed, the inherent turbidity of the lime increased the turbidity of the Vaalkop Dam, M–FOREBAY and M–CANAL_VD source water to such an extent that it affected coagulation negatively, resulting in high turbidity values in the supernatant. Regardless of the turbidity values, the chlorophyll–665 concentration and total algal biomass (C. hirundinella specifically in Vaalkop Dam source water) decreased significantly when CaO was dosed in combination with activated silica. Therefore it was concluded that a cationic poly–electrolyte alone is a good coagulant chemical for the removal of turbidity, but when high algal biomass occur in the source water it is essential to add CaO to “stress” or “shock” the algae for the effective removal thereof. However, when CaO in combination with activated silica was dosed to Rietvlei Dam source water a decrease in turbidity and chlorophyll–665 concentration was found with an increasing coagulant chemical concentration. These results confirm the fact that coagulant chemicals may perform differently during different periods of the year when water chemistry changes and that certain coagulant chemicals may never be suitable to use for certain source waters. For the effective removal of algae during water purification, it is recommended that cationic poly–electrolyte in combination with CaO are used as coagulant chemical at the Zuikerbosch Water Purification Plant. Turbidity is not a good indication of algal removal efficiency during jar testing experiments. If problems with high algal concentrations in the source water are experienced it is advisable to also determine the chlorophyll–665 concentrations of the supernatant water during the regular jar testing experiments, since it will give a better indication of algal removal. Chlorine exposure experiments were performed on water from Vaalkop Dam (M–RAW_VAALKOP) and Rietvlei Dam source water, to determine the possibility of implementing pre– or intermediate chlorination with the aim to render the cells immobile for more effective coagulation. The chlorine exposure experiments with Vaalkop Dam and Rietvlei Dam source water showed similar results. The chlorine concentration to be dosed as part of pre– or intermediate chlorination will differ for each type of source water as the chemical and biological composition of each water body are unique. When the effect of chlorine on the freshwater dinoflagellate C. hirundinella was investigated, it was found that the effective chlorine concentration where 50 % of Ceratium cells were rendered immobile (EC50) was approximately 1.16 mg/L for Vaalkop Dam source water. For the source water sampled from Rietvlei Dam, it was found that the EC50 was at approximately 0.87 mg/L. Results of analyses to determine the organic compounds in the water after chlorination revealed that an increase in chlorine concentration resulted in increase in total organic carbon concentration (TOC), as well as a slight increase in MIB and trihalomethanes (CHCl3). Pre– or intermediate chlorination seem to be an effective treatment option for the dinoflagellate C. hirundinella to be rendered immobile and thereby assisting in its coagulation process. The use of pre– or intermediate chlorination to effectively treat source waters containing high concentrations of C. hirundinella is a viable option to consider. However, the organic compounds in the water should be monitored and the EC50 value for each source water composition should be determined carefully as to restrict cell lysis and subsequent release of organic compounds into the water. / Thesis (M.Sc. (Environmental Science))--North-West University, Potchefstroom Campus, 2012.

Page generated in 0.0923 seconds