• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 23
  • 9
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 125
  • 125
  • 125
  • 41
  • 25
  • 21
  • 19
  • 19
  • 19
  • 18
  • 16
  • 16
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

New insights into principles of scaffolds design for bone application

Yan, Hongji January 2016 (has links)
This thesis presents deeper insights into bone applicable biomaterials’ design. Poor affinity of BMP-2 towards scaffolds required supra-physiological dose administration. Though molecules containing sulfate could sustain BMP-2 release, side effects occurred due to BMP-2 supra-dose, or these sulfate-containing biomolecules. Improved affinity between BMP-2 and scaffolds was first witnessed by using an acidic carrier (paper I). Hyaluronic acid (HA) hydrazone derived hydrogels having a pH of 4.5-loaded BMP-2 showed sustained release of bioactive BMP-2 in vitro and enhanced bone formation in vivo, while pH 7 HA hydrogels showed Fickian behavior and less bone formation in vivo. Computational evaluation revealed stronger electrostatic interactions between BMP-2, and HA were predominant at pH 4.5, whereas, weaker Van der Waals interactions played a key role at pH 7. During the pre-bone formation phase, endogenous cell responses to pH 4.5 and 7 with or without BMP-2 were investigated. HA hydrogels exhibited extraordinary biocompatibility and recruitment of neutrophils, monocytes, macrophages and stromal cells regardless of hydrogels’ pH and BMP-2 presence.  The different inflammatory responses to HA hydrogels were observed (Appendix). Thiol derivatives can cleave the disulfide bond of BMP-2 to generate inactive monomeric BMP-2. In paper II, thiol-acrylate chemistry-based HA hydrogels (HA-SH) were compared to hydrazone-based HA hydrogels as BMP-2 carriers. Thiol modified HA disrupted BMP-2 integrity and bioactivity. HA-SH hydrogels with BMP-2 exhibited less bioactive BMP-2 release in vitro and induced less bone formation in vivo. Accumulated evidence has shown great osteogenic potential of lithium ions (Li). In paper III, we coordinated Li onto HA-PVA hydrazone hydrogels (Li-gel); Li-gel enhanced 3D cultured hMSCs osteogenic differentiation and induced higher bone formation in CAM defect model. Instead of BMP-2 protein, delivery of BMP-2-coding-plasmid can produce BMP-2 over a long term at a closer physiological level. Yet, efficient gene delivery reagents are needed. In paper IV, two novel gene delivery nanoplexes were developed by post coating DNA-nanoplexes with chondroitin sulfate (CS). To ensure the stability, aldehyde-modified CS (CS-CHO) reacted with free amines of pDNA/PEI complexes. We provided first evidence that CS-CHO coated nanoplexes controlled the release from endosomes, which is essential for higher transfection efficiency.
32

The Role of Secreted Phosphoprotein-24 in Osteoblast Differentiation and Matrix Mineralization

Ramage, Samuel 04 December 2007 (has links)
Secreted Phosphoprotein-24 (Spp24) was initially isolated and characterized as a component of bovine cortical bone matrix. Subsequent characterization has shown it is multiply phosphorylated and homologous to cystatin and TGF-β receptor type II. Spp24 is a minor component of the serum fetuin mineral complex that binds calcium-phosphate minerals and prevents their deposition. The TGF-β receptor homology domain binds BMP-2 weakly in vitro and enhances BMP-2’s osteogenic effects in vivo. The ability of Spp24 to affect BMP activity suggests an important role for Spp24 as a native, bioactive componentof bone that regulates bone development. Spp24 was highly up-regulated in rat cortical kidneys following a low calcium diet regime. Tissue distribution of both Spp24 protein and RNA showed that while Spp24 accumulates in bone, a majority is produced at distant sites, namely the liver and kidney. Additionally, Spp24 was present in more tissues than previously believed. Spp24 migrates to a number of different molecular weights, suggesting multiple, alternative posttranslational modifications may generate subtly different forms of the protein. Theexpression of Spp24 in the kidney may be regulated to counteract changes in serum mineral levels. Additionally, homology in the Spp24 sequence suggests that it, like other bone and dentine matrix proteins, may interact with mineral as an important influencer of mineral calcification. Utilizing microarray analysis of primary bone marrow-derived mesenchymal stem cells transduced with Spp24 and control viruses we examined changes elicited by the overexpression of Spp24. A change in overall morphology was observed for cellstransduced with the Spp24 similar to changes described in cells undergoing osteoblasticdifferentiation. Nodule formation was also seen in the Spp24 transduced cells. Microarray results showed key markers of osteoblast differentiation, CBFA1/RUNX2 and osterix(OSX), were not up-regulated although there were distinguishable changes in the gene expression profile of mesenchymal stem cells. The cells appeared to be blocked from differentiation into a number of mesenchymal lineages: adipocytes, myocytes andchondrocytes. The changes appeared to prime cells for signals that activate osteoblastdifferentiation by blocking other pathways and altering internal signaling response pathways to those signals. This document was created in Microsoft Word 2003.
33

The role of bone morphogenetic protein signalling in the control of skin repair after wounding : cellular and molecular mechanisms of cutaneous wound healing mediated by bone morphogenetic proteins and their antagonist Noggin

Lewis, Christopher John January 2013 (has links)
Bone morphogenetic proteins (BMPs) and their receptors (BMPRs) coordinate tissue development and postnatal remodelling by regulating proliferation, differentiation and apoptosis. However, their role in wound healing remains unclear. To study this, transgenic mice overexpressing Smad1 (K14-caSmad1) or the BMP antagonist Noggin (K14-Noggin) were utilised, together with human and mouse ex vivo wound healing models and in vitro keratinocyte culture. In wild-type mice, transcripts for Bmpr-1A, Bmpr-II, Bmp ligands and Smad proteins were decreased following tissue injury, whilst Bmpr-1B expression was up-regulated. Furthermore, immunohistochemistry revealed a down-regulation of BMPR-1A in hair follicles adjacent to the wound in murine skin, whilst in murine and human wounds, BMPR-1B and phospho-Smad-1/5/8 expression was pronounced in the wound epithelial tongue. K14-caSmad1 mice displayed retarded wound healing, associated with reduced keratinocyte proliferation and increased apoptosis, whilst K14-Noggin mice exhibited accelerated wound healing. Furthermore, microarray analysis of K14-caSmad1 epidermis revealed decreased expression of distinct cytoskeletal and cell motility-associated genes including wound-associated keratins (Krt16, Krt17) and Myo5a versus controls. Human and mouse keratinocyte proliferation and migration were suppressed by BMP-4/7 both in vitro and ex vivo, whilst they were stimulated by Noggin. Additionally, K14-caSmad1 keratinocytes showed retarded migration compared to controls when studied in vitro. Furthermore, Bmpr-1B silencing accelerated migration and was associated with increased expression of Krt16, Krt17 and Myo5a versus controls. Thus, this study demonstrates that BMPs inhibit proliferation, migration and cytoskeletal re-organization in epidermal keratinocytes during wound healing, and raises a possibility that BMP antagonists may be used for the future management of chronic wounds.
34

Influência de diferentes superfícies de titânio na adesão, proliferação e diferenciação de células semelhantes a osteoblastos de ratos (osteo-1) em culturas, na presença ou não da proteína morfogenética óssea recombinante-2 (rhBMP-2) / Influence of different titanium surfaces in the adhesion, proliferation and differentiation of rat osteoblast-like cells (osteo-1 culture), in the presence or nor of the recombinant bone morphogenetic protein (rhBMP-2)

Cirano, Fabiano Ribeiro 03 December 2007 (has links)
Este estudo analisou a influência de diferentes superfícies de titânio na adesão, proliferação e diferenciação de células semelhantes a osteoblastos de rato (osteo-1) em culturas, na presença ou não da proteína morfogenética óssea recombinante-2 (rhBMP-2). As células osteo-1 foram cultivadas sobre as seguintes superfícies de titânio: 1. superfície lisa, 2. superfície desgastada com partículas de areia e condicionamento ácido (SLA) e 3. superfície desgastada com partículas de areia e condicionamento ácido sob proteção de nitrogênio e armazenadas em solução isotônica de cloreto de sódio (SLActive), na presença ou não de 20 ng/ml de rhBMP-2. Foram analisadas a adesão celular em 24 horas, o conteúdo total de proteínas, o conteúdo de colágeno e a atividade de fosfatase alcalina em 7, 14 e 21 dias e a formação de nódulos calcificados em 21 dias. Os resultados mostraram que a adesão não foi influenciada nem pelo tipo de superfície nem pelo tratamento com rhBMP-2 (p=0,0936). Quando relacionamos o conteúdo total de proteínas ao número total de células, percebemos que a proliferação não foi influenciada pelo tipo de superfície de titânio, porém a adição de rhBMP-2 levou a uma redução estatisticamente significante na superfície SLA aos 21 dias (p=0,0000). Em relação à diferenciação, pudemos observar que o tipo de superfície não influenciou o conteúdo total de proteínas, o conteúdo de colágeno e a formação de nódulos calcificados em quaisquer dos períodos analisados. A atividade de fosfatase alcalina somente foi influenciada pelo tipo de superfície aos 14 dias, onde o grupo C/SLAactive apresentou valores inferiores ao grupo C/Liso (p=0,0000). A adição de rhBMP-2 promoveu uma maior influência sobre o processo de diferenciação, levando a uma redução estatisticamente significante no conteúdo total de proteínas na superfície SLA aos 21 dias (p=0,0000), a um aumento estatisticamente significante no conteúdo de colágeno na superfície SLActive no período de 7 dias (p=0,0005) e a uma diminuição estatisticamente significante na atividade de fosfatase alcalina na superfície lisa nos períodos de 14 e 21 dias, na superfície SLA aos 14 dias e na superfície SLActive aos 21 dias (p=0,0000). Somente a formação de nódulos calcificados não sofreu influência da adição de rhBMP-2. / This study has analyzed the influence of different titanium surfaces in the adhesion, proliferation and differentiation of rat osteoblast-like cells (osteo-1 culture), in the presence or not, of the recombinant bone morphogenetic protein-2 (rhBMP-2). The osteo-1 cells were grown on the following titanium surfaces: 1. smooth surface; 2. coarse grit-blasted and acid-etched surface (SLA); and 3. coarse grit-blasted and acid-etched surface under nitrogen protection, and stored in sodium chloride isotonic solution (SLActive), in the presence or not, of 20 ng/ml of rhBMP-2. It was analyzed the cell adhesion in 24 hours, the total protein content, the collagen content, and the alkaline phosphatase in 7, 14 and 21-day periods, and also the formation of calcified nodules in 21 days. The results showed that the adhesion was neither influenced by the surface type, nor by the treatment with rhBMP-2 (p=0.0936). When we related the total protein content to the total number of cells, we noticed that the proliferation was not influenced by the titanium surface type; however, the addition of rhBMP-2 led to a statistically significant reduction on the SLA surface at 21 days (p=0.0000). Concerning the differentiation, we could observe that the surface type did not influence the total content of proteins, the collagen content and the formation of calcified nodules in any of the analyzed periods. The alkaline phosphatase activity was only influenced by the surface type at 14 days, where the group C/SLActive presented lower values than the group C/Smooth (p=0.0000). The addition of rhBMP- 2 promoted a bigger influence over the differentiation process, thus leading to a statistically significant reduction in the total protein content on the SLA surface at 21 days (p=0.0000), a statistically significant increase in the collagen content on the surface SLActive in the 7-day period (p=0.0005), a statistically significant reduction in the alkaline phosphatase activity on the smooth surface in the 14 and 21-day periods, on the SLA surface at 14 days, and on the SLActive surface at 21 days (p=0.0000). Only the formation of calcified nodules did not undergo influence of the rhBMP-2 addition.
35

Investigating gene expression patterns in the mammalian cardiovascular system

Tsang, Hiu-Gwen January 2018 (has links)
The cardiovascular system is an essential component of mammalian biology. It is a complex network of various tissues and structures with unique functions. The function of the cardiovascular system is to supply nutrients including oxygen to the various cells, tissues and organs within the body, and remove waste products from them. Given the importance of this role, it is not surprising that there are countless regulatory mechanisms at the molecular, cellular and tissue levels that are required to support this functional system. Perturbations in parts of this system are likely to lead to abnormalities, and thus give rise to cardiovascular-related diseases. Despite the currently expanding list of genes reported to be involved in a variety of cardiovascular-related diseases, including calcific aortic valve disease (CAVD), the functions and associated pathways of these factors in both normal and pathological physiology have yet to be fully understood, such as at the transcriptomic level. In this thesis, a genome-wide transcriptomic atlas of the healthy mammalian cardiovascular system was generated using the sheep as a large animal model. This atlas was generated using RNA-seq, with the aim of further understanding normal gene expression patterns in the context of the known physiology of healthy mammalian tissues. Through this work, I identified novel gene networks and detailed functional clustering of co-expressed genes with region-specific expression and specialised cardiovascular roles. One interesting cluster was highly expressed in the cardiac valves, and shared genes found in physiological bone development, such as bone morphogenetic protein 4 (BMP4), collagen type I alpha 2 (COL1A2), Sry homeobox 8 (SOX8) and bone gamma-carboxyglutamate protein (BGLAP), some of which have been implicated in vascular calcification. Further to this work, I studied the expression profiles of these key cardiovascular genes during development in the sheep from foetal to adult stages. In addition, I investigated the gene expression patterns of various key vascular calcification genes. These studies showed differential expression of genes in the different cardiovascular tissues, demonstrating transcriptional differences between these different tissues known to have different functions. CAVD involves progressive valve leaflet thickening and severe calcification, resulting in impaired leaflet motion. The in vitro calcification of primary rat, human, porcine and bovine aortic valve interstitial cells (VICs) is commonly employed to examine the mechanisms of CAVD. However, to date, no published studies have utilised cell lines to investigate this process Thus, in this project, I generated and evaluated the calcification potential of an immortalised cell line derived from sheep aortic VICs (SAVICs). This novel large animal in vitro model of CAVD was demonstrated to calcify under high calcium and phosphate conditions. Changes in the expression of key calcification genes during VIC calcification was also observed, including increased mRNA expression of bone markers Runt-related transcription factor 2 (RUNX2) and sodium-dependent phosphate transporter 1 (PiT1), and a concomitant decrease in matrix Gla protein (MGP) mRNA expression. In addition, the role of extracellular nucleotides and their receptors (P2 receptors), which have been previously shown to be important in bone and vascular calcification, were investigated using SAVICs in vitro. This study has shown that extracellular nucleotides, particularly adenosine 5’-triphosphate (ATP) and uridine 5’-triphosphate (UTP) and other agonists of P2 receptors, reduced VIC calcification in vitro. Moreover, the cutting-edge gene-editing technology, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9), was successfully applied to generate large animal models of cardiovascular-related diseases. In this project, I applied the CRISPR/Cas9 technology to edit ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and fibrillin 1 (FBN1) to generate two models of vascular calcification and Marfan Syndrome (MFS), respectively. In the ENPP1-edited animals, soft tissue calcification has been observed in the biallelic mutant and homozygous pigs. In this project, I have developed a range of novel in vitro and in vivo tools to advance the study of cardiovascular disease. These studies demonstrate that large animal models are highly valuable in the field of cardiovascular biology. The in vivo and in vitro experimental models described should facilitate detailed analysis of cardiovascular molecular biology and ultimately lead to therapies which will minimise the morbidity and mortality currently arising from cardiovascular pathology.
36

Utilização da membrana de elastina associada a hidroxiapatita e proteí­na morfogenética óssea no reparo de defeitos cranianos de ratos / Use of elastin membrane associated with hydroxyapatite and bone morphogenetic protein in the repair of cranial defects of rats

Moraes, Renato de 24 October 2017 (has links)
Devido as limitações relacionadas ao emprego do enxerto autólogo, o uso dos biomateriais poliméricos naturais tornou-se uma opção viável em terapias regenerativas do tecido ósseo. O objetivo desse trabalho é avaliar de forma qualitativa e quantitiva a contribuição da membrana de elastina utilizada isoladamente ou em associação a hidroxiapatita e proteína morfogenética óssea, no reparo de defeitos ósseos no crânio de ratos. Foram utilizados 49 ratos (Rattus norvegicus, Wistar), machos, com peso aproximado de 330 gramas e 4 meses de idade. Os animais foram submetidos ao procedimento cirúrgico para a criação do defeito ósseo no osso parietal esquerdo e divididos em 7 grupos com 7 animais cada. Os grupos foram implantados com os seguintes bioamateriais: grupo 1 controle (G1-C) sem implante, grupo 2 (G2-E24h) membrana de elastina 24 h, grupo 3 (G3-E24h/HA) membrana de elastina 24 h com hidroxiapatita, grupo 4 (G4-E24h/BMP) membrana de elastina 24 h com proteína morfogenética óssea, grupo 5 (G5-E96h) membrana de elastina 96 h, grupo 6 (G6-E96h/HA) membrana de elastina 96 h com hidroxiapatita, grupo 7 (G7-E96h/BMP) membrana de elastina 96 h com proteína morfogenética óssea. Após a morte indolor induzida em 6 semanas, as calotas cranianas foram retiradas para análise macroscópica, radiográfica, histológica e morfométrica. As análises macroscópicas, radiográficas e histológicas demonstraram a biocompatibilidade dos biomateriais utilizados. As médias e desvios-padrão do volume percentual relativo de osso neoformado nos defeitos cranianos dos grupos G1 a G7 foram 7,87±2,53; 24,01±0,55; 9,59±1,27; 31,31±6,37; 19,77±2,62; 7,31±2,43; 43,25±3,72, respectivamente. Os biomateriais mostraram-se biocompatíveis e o grupo 7 (G7-E96h/BMP) resultou na maior neoformação óssea. / Due to the limitations related to the use of autologous grafts, the use of natural polymeric biomaterials has become a viable option in regenerative therapies of bone tissue. The objective of this dissertation is to evaluate in qualitative and quantitative way the contribution of the elastin matrice used alone or in combination with hydroxyapatite and bone morphogenetic protein in the repair of bone defects in the skull of rats. Were use 49 Mices (Rattus norvegicus, Wistar), weighting approximately 330 grams and 4 months of age, were used. The animals were submitted to the surgical procedure to create the bone defect in the left parietal bone and divided into 7 groups with 7 animals each. The groups were implanted with the following biomaterials: group 1 control (G1-C) without biomaterial, group 2 (G2-E24h) 24 h elastin membrane, group 3 (G3-E24h/HA) 24 h elastin membrane with hydroxyapatite, Group 4 (G4-E24h/BMP) elastin membrane 24 h with bone morphogenetic protein, group 5 (G5-E96h) elastin membrane 96 h, group 6 (G6- E96h/HA) elastin membrane 96 h with hydroxyapatite, group 7 (G7-E96h/BMP) 96 h elastin membrane with bone morphogenetic protein. After painless death induced at 6 weeks, the skull caps were removed for macroscopic, radiographic, histological and morphometric analysis. Macroscopic, radiographic and histological analysis demonstrated the biocompatibility of the biomaterials used. The mean and standard deviations of the relative percentage volume of newly formed bone in the cranial defects of the G1 to G7 groups were 7,87±2,53; 24,01±0,55; 9,59±1,27; 31,31±6,37; 19,77±2,62; 7,31±2,43; 43,25±3,72, respectively. The implanted biomaterials were shown to be biocompatible and the group 7 (G7-E96h/BMP) resulted with greater bone neoformation.
37

Synthesis and Biological Evaluation of Small Molecule Inhibitors of BMPR1b

Machicao Tello, Paulo Andre 01 July 2016 (has links)
Methods for preparing an array of potential small molecule inhibitors of Bone Morphogenetic Protein Receptor 1b (BMPR1b) are described. Target molecules were prepared from two general classes: (1) N9-aryl-N6-ureidoadenines, and (2) dicarbamyl iodoacetamides. Recent data from the Peterson lab indicated that both classes might bind to BMPR1b and thus inhibit this key receptor. Docking studies performed using Sureflex Dock suggested the N9-aryl-N6-ureidoadenines would bind to the active site of BMPR1b. In addition antiproliferative activities of dicarbamyl iodoacetamides previously synthesized in the Peterson lab pointed to this moiety as an attractive target for structure activity relationship (SAR) development. Compounds were prepared in good to excellent yields and 40 derivatives were screened for antiproliferative activity. Of the N9-aryl-N6-ureidoadenine derivatives, N9-phenyl-N6-N-phenylureaadenine was most potent and exhibited selective activity against HeLa cells (IC50 = 11± 1 uM). Dicarbamyl iodoacetamide derivatives had similar activities compared to the previously reported compound (JRS-150).
38

Bisphosphonate-modified nanoparticles as drug delivery systems for bone diseases

Wang, guilin 06 1900 (has links)
The objective of this thesis is to design nanoparticle (NP)-based drug delivery systems suitable for treatment of bone diseases. Two types of nanocarriers, (1) polymer coated bovine serum albumin (BSA) NPs and (2) lipid based NPs (micelles and liposomes) were investigated. The BSA NPs were prepared by a coacervation method and stabilized with a polymer coating approach. For bone-specific delivery of bone morphogenetic protein-2 (BMP-2), a copolymer polyethyleneimine-graft-poly(ethylene glycol) conjugated with 2-(3-mercaptopropylsulfanyl)-ethyl-1,1-bisphosphonic acid (PEI-PEG-thiolBP) was synthesized and used for coating the BSA NPs. The particle size and ζ-potential of the NPs could be effectively modulated by the processing parameters. All the NPs showed no or low cytotoxicity (except for a high concentration of PEI), and the NP encapsulated BMP-2 displayed full retention of its bioactivity. By encapsulating 125I-labeled BMP-2, the polymer-coated NPs were assessed for hydroxyapatite (HA) affinity; all NP-encapsulated BMP-2 showed significant affinity to HA as compared with free BMP-2 in vitro, and the PEI-PEG-thiolBP coated NPs improved the in vivo retention of BMP-2 compared with uncoated NPs. However, the biodistribution of NPs after intravenous injection in a rat model indicated no beneficial effects of thiolBP-coated NPs for bone targeting. Alternatively, micelles and liposomes were prepared with a conjugate of distearoylphosphoethanolamine-polyethyleneglycol with thiolBP (DSPE-PEG-thiolBP) to create mineral-binding nanocarriers. The thiolBP-decorated liposomes also displayed a stronger binding affinity to HA and a collagen/HA (Col/HA) scaffold and gave increased retention in the scaffold in a subcutaneous implant model in rats. Taking advantage of the high HA affinity of the BP-liposomes, a sustainable release system was developed by sequestering the liposomal drugs in the Col/HA scaffolds. Three different model drugs, carboxyfluorescein, doxorubicin and lysozyme, were used to evaluate the drug release profiles from the liposome-loaded scaffolds, and all showed a slowing effect of the BP on the release of the liposome-encapsulated drugs from the Col/HA scaffolds. This liposome-scaffold combination will provide a platform for the application of various therapeutic agents for bone regeneration. In conclusion, the BP-modified NPs showed strong mineral-binding affinity. Although the systemic bone targeting was limited by physiological barriers, these NPs are promising in local delivery and controlled release of bioactive molecules for treatment of bone diseases. / Chemical Engineering
39

Effects of macrophages and noggin suppression on the BMP-2-induced osteogenesis of human bone marrow mesenchymal stem cells

Chen, Chao 06 1900 (has links)
The osteogenic effects of bone morphogenetic protein-2 (BMP-2) on human mesenchymal stem cells (MSCs) are less profound than expected as compared with rodent cells, and supraphysiological dose of BMP-2 is required to achieve desired clinical outcome. The mechanism for this phenomenon is unclear. In this study, we examined the effects of macrophages and noggin suppression on the BMP-2-induced osteogenesis of human bone marrow MSCs in vitro. Our data show that macrophage conditioned medium significantly decreased the migration capacity, metabolic activity and BMP-2-induced osteogenesis of MSCs. In addition, knocking down noggin by small interfering RNA (siRNA) also significantly decreased BMP-2-induced osteogenesis and proliferation of MSCs. In summary, our studies demonstrated that macrophages and knocking down the expression of noggin decreased BMP-2-induced osteogenesis of human MSCs in vitro. In the future, manipulation on macrophage activation and noggin expression may allow us to achieve higher BMP-2-induced osteogenesis that leads to better bone healing. / Experimental Surgery
40

Molecular and Cellular Complexity of Glioma : Highlights on the Double-Edged-Sword of Infiltration Versus Proliferation and the Involvement of T Cells

Çağlayan, Demet January 2012 (has links)
Glioblastoma multiforme (GBM), the most common and malignant brain tumor, is characterized by high molecular and cellular heterogeneity within and among tumors. Parameters such as invasive growth, infiltration of immune cells and endothelial proliferation contribute in a systemic manner to maintain the malignancy. Studies in this thesis show that the expression of Sox2 is correlated with Sox21 in human gliomas. We demonstrate that an upregulation of Sox21 induces loss of proliferation, apoptosis and differentiation in glioma cells in vitro and in vivo and seems to correlate with decreased Sox2 expression. Induced expression of Sox21 in vivo significantly reduces the tumor size and increase the survival extensively, suggesting that Sox21 can act as a tumor suppressor Our studies indicate that the balance of Sox21-Sox2 in glioma cells is decisive of either a proliferative or a non-proliferative state. Several TGFß family members have an important role in glioma development. TGFß promotes proliferation and tumorigenicity whereas BMPs mostly inhibit proliferation. We demonstrate that BMP7 can induce the transcription factor Snail in glioma cells and that this reduces the tumorigenicity with a concomitant increase in invasiveness. Thus, we have identified a mechanism to the double-edged sword of proliferation versus invasiveness in GBM, the latter contributing to relapse in patients. Experimental gliomas were induced with the Sleeping Beauty (SB) model in mice with different immunological status of their T cells. The tumors that developed were either GBMs or highly diffuse in their growth, reminiscent of gliomatosis cerebri (GC). GC is a highly uncommon form of glioma characterized by extensive infiltrative growth in large parts of the brain. It is an orphan disease and today there is practically a total lack of relevant experimental models. The SB system would constitute a novel experimental model to study the mechanisms behind the development of diffusely growing tumors like GC. The presence or absence of T cells did not affect tumor development. The work in this thesis demonstrates that the proliferative and the invasive capacities of glioma cells can be dissociated and that the SB model constitutes an excellent model to study the highly proliferative cells in GBMs versus the highly invasive cells in diffuse tumors like .GC.

Page generated in 0.5059 seconds