• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 23
  • 9
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 125
  • 125
  • 125
  • 41
  • 25
  • 21
  • 19
  • 19
  • 19
  • 18
  • 16
  • 16
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Intercellular Signaling Pathways in the Initiation of Mammalian Forebrain Development

Yang, Yu-Ping 03 May 2007 (has links)
The Spemann organizer in amphibians gives rise to the anterior mesendoderm (AME) and is capable of inducing neural tissues. This inductive activity is thought to occur largely via the antagonism of Bone Morphogenetic Protein (BMP) signaling in the organizer. In the mouse, BMP antagonists Chordin and Noggin function redundantly in the AME and are required during forebrain maintenance. However, the timing of forebrain initiation and the function of BMP antagonism in forebrain initiation remained unclear prior to this study. In addition, the Transforming Growth Factor β (TGFβ) ligand Nodal patterns the forebrain via its function in the anterior primitive streak (APS), the precursor tissue of the AME. Whether BMP and Nodal signaling pathways interact has not been previously investigated. The goal of this dissertation was to investigate the cellular and molecular mechanisms involved in early mammalian forebrain establishment by embryonic and genetic manipulations. This study determined that forebrain initiation occurs during early gastrulation and requires signals from the AVE and AME. The AVE was identified as a source of active BMP antagonism in vivo, and the BMP antagonism supplied by exogenous tissues was capable to promote forebrain initiation and maintenance in the murine ectoderm. It is likely that BMP antagonism enhances forebrain gene expression via inhibiting posteriorization. This study further identified a possible crosstalk between BMP and Nodal signaling. Loss of Chordin or Noggin in combination with heterozygosity for Nodal or Smad3 results in holoprosencephaly. Molecular analyses suggest that the BMP-Nodal interaction occurs in the APS and/or the AME. Failure of this interaction results in an imbalance of BMP and Nodal signal levels that devastate APS and AME patterning during early forebrain establishment, ultimately leading to holoprosencephaly in mid-gestation. This interaction is likely to occur extracellularly, possibly by formation of a BMP-Nodal heteromeric complex. Furthermore, the spatiotemporal expression of phospho-Smad1/5/8, an effector of BMP signaling pathway, was characterized during early mouse embryogenesis. Distribution of phospho-Smad1/5/8 serves as a faithful readout of BMP signaling activity and helps to better understand how BMPs are involved in patterning early embryos. The implication of phospho-Smad1/5/8 expression in both wildtype and mutant embryos is also discussed. / Dissertation
42

Functional Tissue Engineering of Cartilage Using Adipose-derived Stem Cells

Estes, Bradley Thomas 31 March 2008 (has links)
<p>Articular cartilage is the thin, load-bearing connective tissue that lines the ends of long bones in diarthroidal joints, providing predominantly a mechanical function. Because cartilage is avascular and aneural, it has little capacity for self-repair if damaged. One repair strategy is through a functional tissue engineering approach using adipose-derived stem cells (ASCs). ASCs are an abundant progenitor cell source easily obtained through a minimally invasive liposuction procedure. When appropriately stimulated, ASCs have demonstrated significant potential for chondrogenic differentiation. Though studies have demonstrated the ability of ASCs to synthesize cartilage-specific macromolecules, a more thorough understanding of factors that modulate ASC chondrogenesis is required. Accordingly, the central aim of this dissertation was to study the chondrogenic response of ASCs to biochemical, biomechanical, and biomaterial factors.</p><p>We hypothesized that factors, other than TGF-beta and dexamethasone, would improve ASC chondrogenesis. BMP-6 emerged as a potent regulator of ASC chondrogenesis, particularly in early culture, as noted by significant upregulation of cartilage-specific extracellular matrix (ECM) genes and downregulation of cartilage hypertrophy markers.</p><p>Hypothesizing that biomechanical factors would accelerate the formation of cartilage-specific macromolecules, we designed and manufactured an instrument to apply dynamic deformational loading to ASC seeded constructs. Dynamic loading significantly inhibited ASC metabolism and downregulated cartilage-specific ECM genes. However, 21 days of dynamic loading induced the production of type II collagen, a principal component of articular cartilage.</p><p>We hypothesized that a biomaterial derived from cartilage would serve as a bioactive scaffold and induce chondrogenic differentiation. The novel, ECM-derived scaffold promoted the most robust differentiation of ASCs relative to both biochemical and biomechanical factors, particularly noted by a type II collagen-rich matrix after 28 days of culture. After 42 days of culture, biphasic mechanical testing revealed an aggregate modulus of 150 kPa, approaching that of native cartilage. These data suggest that the ECM-derived scaffold may retain important signaling molecules to drive differentiation or that ASC differentiation is dependent on proper cell anchorage.</p><p>In summary, we have shown that biochemical, biomechanical, and biomaterial factors have strong influences on the chondrogenic potential of ASCs. Optimization of these factors will ultimately be required to successfully engineer a functional tissue.</p> / Dissertation
43

The Role of ALK3 in Urogenital Development

Di Giovanni, Valeria 15 February 2011 (has links)
The mammalian kidney and reproductive systems both derive from a common embryological origin, the intermediate mesoderm. Abnormal intermediate mesoderm development can result in congenital abnormalities of the urogenital system, yet the molecular mechanisms that govern intermediate mesoderm development are incompletely defined. The spatial and temporal expression of the proteins BMP2 and 4 and their receptor ALK3, in urogenital tissue, suggests a function for BMP-ALK3 signaling in the intermediate mesoderm. It was found that Alk3IM null kidneys display renal hypoplasia, associated with a decrease in kidney size and nephron number. The phenotype of renal hypoplasia in Alk3IM nulls was associated with early decreased number of developing nephron structures and secondary defects in branching morphogenesis. While neither apoptosis nor cell proliferation differed in metanephric mesenchyme cells in Alk3IM nulls, markers of renal progenitor cells were decreased in mutant animals. It was observed that Alk3 expression in the intermediate mesoderm also controls mesonephric tubule number. Alk3IM nulls had fewer mesonephric tubules and fewer derivative Leydig cells. The reduction in Leydig cells resulted in decreased levels in serum testosterone and defects in seminal vesicle formation and fertility. Alk3 expression was also required for normal development of the corpus epididymis. The morphological defects in nephrogenesis were associated with decreased phospho-p38 MAPK expression and in the testis with decreased Phospho-SMAD1/5/8. These results elucidated a requirement for Alk3 signaling in controlling progenitor cells derived from the intermediate mesoderm.
44

Effects of macrophages and noggin suppression on the BMP-2-induced osteogenesis of human bone marrow mesenchymal stem cells

Chen, Chao Unknown Date
No description available.
45

Bisphosphonate-modified nanoparticles as drug delivery systems for bone diseases

Wang, guilin Unknown Date
No description available.
46

Die Rekonstruktion des Unterkiefers bei Knochendefekten mit einer Kombination aus rhBMP-2, einer synthetischen Polyethylenglycol-Matrix und Calciumphosphat -Eine Pilotstudie am Göttinger Minipig / The reconstruction of mandibular bone defects using a combination of rhBMP -2, a synthetic polyethylene glycol hydrogel and calcium phosphate -A pilot study in Göttingen minipigs

Krohn, Sebastian 28 April 2015 (has links)
No description available.
47

BONE ENGINEERING OF THE ULNA OF RABBIT

Hart, Amanda Peter 01 January 2005 (has links)
Repair of bone defects is a major challenge in orthopaedic surgery. Current bone graft treatments, including autografts, allografts and xenografts, have many limitations making it necessary to develop a biomaterial to be a bone graft substitute. One such biomaterial is bioactive resorbable silica-calcium phosphate nanocomposite (SCPC). SCPC was processed using a 3D rapid prototyping technique and sintered at different temperatures to create porous scaffolds. SEM analyses and mercury intrusion porosimetry showed SCPC to be highly porous with micro- and nanopores. BET analysis indicated that SCPC had high surface area. Mechanical testing demonstrated that SCPC had a compressive strength similar to trabecular bone. Analysis of different thermal treatment temperatures indicated as the temperature was increased, the porosity decreased and the mechanical strength increased. When loaded with rhBMP-2 (SCPC-rhBMP-2), SCPC provided a sustained release profile of rhBMP-2 for 14 days. This was shown to be a greater release than hydroxyapatite (HA)-rhBMP-2. After immersion in SBF, ICP analyses showed the calcium concentration of SBF dropped drastically after one day of immersion. In conjunction, FTIR showed the formation of a hydroxyapatite layer on the SCPC surface and was confirmed by SEM. SCPC thermally treated at 850 ??C demonstrated the greatest dissolution/precipitation reactions when immersed in SBF. Processing the SCPC-rhBMP-2 hybrid using a rapid prototyping technique allowed for an exact replica of the rabbit ulna to be fabricated. This was implanted into a 10 mm segmental defect in the rabbit ulna. CT scans during the healing of the defect showed intimate union between SCPC-rhBMP-2 and the bone and about 65% healing of the defect after 4 weeks. Rabbits were euthanized after 12 and 16 weeks. Digital images show almost complete healing of the defect after 16 weeks. Torsional testing of the ulna after 12 weeks demonstrated restoration of maximum torque and angle at failure. Histological evaluation after 12 weeks showed the regenerated bone has all the morphological characteristics of mature bone. Through in-vitro and in-vivo testing, it can be recommended that the porous bioactive SCPC can serve as a successful delivery system for biological growth factors and serve as an alternative to autologous bone grafting.
48

The Role of ALK3 in Urogenital Development

Di Giovanni, Valeria 15 February 2011 (has links)
The mammalian kidney and reproductive systems both derive from a common embryological origin, the intermediate mesoderm. Abnormal intermediate mesoderm development can result in congenital abnormalities of the urogenital system, yet the molecular mechanisms that govern intermediate mesoderm development are incompletely defined. The spatial and temporal expression of the proteins BMP2 and 4 and their receptor ALK3, in urogenital tissue, suggests a function for BMP-ALK3 signaling in the intermediate mesoderm. It was found that Alk3IM null kidneys display renal hypoplasia, associated with a decrease in kidney size and nephron number. The phenotype of renal hypoplasia in Alk3IM nulls was associated with early decreased number of developing nephron structures and secondary defects in branching morphogenesis. While neither apoptosis nor cell proliferation differed in metanephric mesenchyme cells in Alk3IM nulls, markers of renal progenitor cells were decreased in mutant animals. It was observed that Alk3 expression in the intermediate mesoderm also controls mesonephric tubule number. Alk3IM nulls had fewer mesonephric tubules and fewer derivative Leydig cells. The reduction in Leydig cells resulted in decreased levels in serum testosterone and defects in seminal vesicle formation and fertility. Alk3 expression was also required for normal development of the corpus epididymis. The morphological defects in nephrogenesis were associated with decreased phospho-p38 MAPK expression and in the testis with decreased Phospho-SMAD1/5/8. These results elucidated a requirement for Alk3 signaling in controlling progenitor cells derived from the intermediate mesoderm.
49

Early development of two cell populations at the neural plate border : rohon-beard sensory neurons and neural crest cells /

Rossi, Christy Cortez. January 2008 (has links)
Thesis (Ph.D. in Neuroscience) -- University of Colorado Denver, 2008. / Includes bibliographical references (leaves 112-120). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
50

The role of bone morphogenetic protein 2 in SMA-directed angiogenesis during distraction osteogenesis

Cheng, Thomas Wen-Tao 08 April 2016 (has links)
Bone is one of the few organs capable of regeneration after a substantial injury. As the bone heals itself after trauma, the coupling of angiogenesis to osteogenesis is crucial for the restoration of the skeletal tissue. In prior studies we have shown that Bone Morphogenetic Protein 2 (BMP2), a potent agonist for skeletal formation is expressed by vessels making it a prime candidate that links the morphogenesis of the two tissues. To investigate the role of BMP2 in the coordination of vessel and bone formation, we used a tamoxifen inducible Smooth Muscle Actin (SMA) promoter that conditionally expresses Cre recombinases crossed with a BMP2 floxed mouse in order to conditionally delete the BMP2 gene in smooth muscle actin (SMA) expressing cells. Using the mouse femur as our model for bone regeneration, we performed a surgical technique called distraction osteogenesis (DO) where an osteotomy is created followed by distraction or a gradual separation of the two pieces of bone. This primarily promotes intramembranous ossification at the osteotomy site by mechanical stimulation. Tamoxifen treatment started at day 6 and continued throughout the experiment. At post-operative days 3, 7, 12, 17, 24, and 31, we analyzed the bone and vessel formation by plain X-ray, micro-computed tomography (µCT) and vascular contrast enhanced µCT, and quantitative polymerase chain reaction (qPCR) of selective genes. We assessed both the femur and surrounding tissue to obtain qualitative and quantitative assessments for skeletal and vascular formation. Our results demonstrated that the deletion of BMP2 in vascular tissue resulted in a reduction of angiogenesis in vivo followed by a decrease in skeletal tissue development.

Page generated in 0.0705 seconds