11 |
Episode 4.06 – Properties of Boolean AlgebraTarnoff, David 01 January 2020 (has links)
In this episode, we bring together our knowledge of logic operations, truth tables, and boolean expressions to prove some basic properties of Boolean algebra.
|
12 |
Episode 4.07 – Identities of Boolean AlgebraTarnoff, David 01 January 2020 (has links)
We are familiar with algebraic laws such as multiply zero by anything, and we get zero. In this episode, we see how a Boolean expression containing a constant, a duplicated signal, or a signal being combined with its inverse will simplify…always.
|
13 |
The Lattice of Varieties of Distributive Pseudo-Complimented LatticesLee, Kee-Beng 05 1900 (has links)
<p>The lattice of varieties of distributive
pseudo-complemented lattices is completely described, viz. a chain
of type W + 1. Moreover, each variety is determined by a single
equation in addition to those equations which define distributive
pseudo-complemented lattices. Characterizations of distributive
pseudo-complemented lattices satisfying a certain equation are
given which turn out to be generalizations of L. Nachbin's result
for Boolean algebras and the results for Stone algebras obtained
by G. Gratzer-E. '11. Schmidt and J. C. Varlet. </p> / Thesis / Doctor of Philosophy (PhD)
|
14 |
Teorie a algebry formulí / Theories and algebras of formulasGarlík, Michal January 2011 (has links)
In the present work we study first-order theories and their Lindenbaum alge- bras by analyzing the properties of the chain BnT n<ω, called B-chain, where BnT is the subalgebra of the Lindenbaum algebra given by formulas with up to n free variables. We enrich the structure of Lindenbaum algebra in order to cap- ture some differences between theories with term-by-term isomorphic B-chains. Several examples of theories and calculations of their B-chains are given. We also construct a model of Robinson arithmetic, whose n-th algebras of definable sets are isomorphic to the Cartesian product of the countable atomic saturated Boolean algebra and the countable atomless Boolean algebra. 1
|
15 |
Matroids on Complete Boolean AlgebrasHiggs, Denis Arthur 10 1900 (has links)
The approach to a theory of non-finitary matroids, as outlined by the author in [20], is here extended to the case in which the relevant closure operators are defined on arbitrary complete Boolean algebras, rather than on the power sets of sets. As a preliminary to this study, the theory of derivatives of operators on complete Boolean algebras is developed and the notion, having interest in its own right, of an analytic closure operator is introduced . The class of B-matroidal closure operators is singled out for especial attention and it is proved that this class is closed under Whitney duality. Also investigated is the class of those closure operators which are both matroidal and topological. / Thesis / Doctor of Philosophy (PhD)
|
16 |
Μια μπουλιανή γενίκευση της απειροστικής ανάλυσης με εφαρμογές στα ασαφή σύνολα / A boolean generalization of non standard analysis with applications to fuzzy setsΜαρκάκης, Γεώργιος 06 May 2015 (has links)
Στη διατριβή αυτή θα ασχοληθούμε με την Μπουλιανή ανάλυση σαν μια κατ'ευθείαν γενίκευση της μη συμβατικής ανάλυσης του Robinson, δηλ. της θεωρίας των Υπεργινομένων και τις εφαρμογές της στη θεωρία των Ασαφών συνόλων. / --
|
17 |
Semântica proposicional categóricaFerreira, Rodrigo Costa 01 December 2010 (has links)
Made available in DSpace on 2015-05-14T12:11:59Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 891353 bytes, checksum: 2d056c7f53fdfb7c20586b64874e848d (MD5)
Previous issue date: 2010-12-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The basic concepts of what later became called category theory were introduced in 1945 by
Samuel Eilenberg and Saunders Mac Lane. In 1940s, the main applications were originally
in the fields of algebraic topology and algebraic abstract. During the 1950s and 1960s, this
theory became an important conceptual framework in other many areas of mathematical
research, especially in algrebraic homology and algebraic geometry, as shows the works of
Daniel M. Kan (1958) and Alexander Grothendieck (1957). Late, questions mathematiclogics
about the category theory appears, in particularly, with the publication of the
Functorial Semantics of Algebraic Theories (1963) of Francis Willian Lawvere. After,
other works are done in the category logic, such as the the current Makkai (1977), Borceux
(1994), Goldblatt (2006), and others. As introduction of application of the category theory
in logic, this work presents a study on the logic category propositional. The first section
of this work, shows to the reader the important concepts to a better understanding of
subject: (a) basic components of category theory: categorical constructions, definitions,
axiomatic, applications, authors, etc.; (b) certain structures of abstract algebra: monoids,
groups, Boolean algebras, etc.; (c) some concepts of mathematical logic: pre-order, partial
orderind, equivalence relation, Lindenbaum algebra, etc. The second section, it talk
about the properties, structures and relations of category propositional logic. In that
section, we interpret the logical connectives of the negation, conjunction, disjunction and
implication, as well the Boolean connectives of complement, intersection and union, in
the categorical language. Finally, we define a categorical boolean propositional semantics
through a Boolean category algebra. / Os conceitos básicos do que mais tarde seria chamado de teoria das categorias são introduzidos
no artigo General Theory of Natural Equivalences (1945) de Samuel Eilenberg e
Saunders Mac Lane. Já em meados da década de 1940, esta teoria é aplicada com sucesso
ao campo da topologia. Ao longo das décadas de 1950 e 1960, a teoria das categorias ostenta
importantes mudanças ao enfoque tradicional de diversas áreas da matemática, entre
as quais, em especial, a álgebra geométrica e a álgebra homológica, como atestam os pioneiros
trabalhos de Daniel M. Kan (1958) e Alexander Grothendieck (1957). Mais tarde,
questões lógico-matemáticas emergem em meio a essa teoria, em particular, com a publica
ção da Functorial Semantics of Algebraic Theories (1963) de Francis Willian Lawvere.
Desde então, diversos outros trabalhos vêm sendo realizados em lógica categórica, como
os mais recentes Makkai (1977), Borceux (1994), Goldblatt (2006), entre outros. Como
inicialização à aplicação da teoria das categorias à lógica, a presente dissertação aduz um
estudo introdutório à lógica proposicional categórica. Em linhas gerais, a primeira parte
deste trabalho procura familiarizar o leitor com os conceitos básicos à pesquisa do tema:
(a) elementos constitutivos da teoria das categorias : axiomática, construções, aplicações,
autores, etc.; (b) algumas estruturas da álgebra abstrata: monóides, grupos, álgebra de
Boole, etc.; (c) determinados conceitos da lógica matemática: pré-ordem; ordem parcial;
equivalência, álgebra de Lindenbaum, etc. A segunda parte, trata da aproximação da
teoria das categorias à lógica proposicional, isto é, investiga as propriedades, estruturas
e relações próprias à lógica proposicional categórica. Nesta passagem, há uma reinterpreta
ção dos conectivos lógicos da negação, conjunção, disjunção e implicação, bem como
dos conectivos booleanos de complemento, interseção e união, em termos categóricos. Na
seqüência, estas novas concepções permitem enunciar uma álgebra booleana categórica,
por meio da qual, ao final, é construída uma semântica proposicional booleana categórica.
|
18 |
Classical and quantum computing.Hardy, Yorick 29 May 2008 (has links)
Prof. W.H. Steeb
|
19 |
A New Combination Procedure for the Word Problem that Generalizes Fusion Decidability Results in Modal LogicsBaader, Franz, Ghilardi, Silvio, Tinelli, Cesare 30 May 2022 (has links)
Previous results for combining decision procedures for the word problem in the non-disjoint case do not apply to equational theories induced by modal logics - which are not disjoint for sharing the theory of Boolean algebras. Conversely, decidability results for the fusion of modal logics are strongly tailored towards the special theories at hand, and thus do not generalize to other types of equational theories. In this paper, we present a new approach for combining decision procedures for the word problem in the non-disjoint case that applies to equational theories induced by modal logics, but is not restricted to them. The known fusion decidability results for modal logics are instances of our approach. However, even for equational theories induced by modal logics our results are more general since they are not restricted to so-called normal modal logics. / This report has also appeared as Report No. 03-03, Department of Computer Science, The University of Iowa.
|
20 |
Logic Synthesis with High Testability for Cellular ArraysSarabi, Andisheh 01 January 1994 (has links)
The new Field Programmable Gate Array (FPGA) technologies and their structures have opened up new approaches to logic design and synthesis. The main feature of an FPGA is an array of logic blocks surrounded by a programmable interconnection structure. Cellular FPGAs are a special class of FPGAs which are distinguished by their fine granularity and their emphasis on local cell interconnects. While these characteristics call for specialized synthesis tools, the availability of logic gates other than Boolean AND, OR and NOT in these architectures opens up new possibilities for synthesis. Among the possible realizations of Boolean functions, XOR logic is shown to be more compact than AND/OR and also highly testable. In this dissertation, the concept of structural regularity and the advantages of XOR logic are used to investigate various synthesis approaches to cellular FPGAs, which up to now have been mostly nonexistent. Universal XOR Canonical Forms, Two-level AND/XOR, restricted factorization, as well as various Directed Acyclic Graph structures are among the proposed approaches. In addition, a new comprehensive methodology for the investigation of all possible XOR canonical forms is introduced. Additionally, a new compact class of XOR-based Decision Diagrams for the representation of Boolean functions, called Kronecker Functional Decision Diagrams (KFDD), is presented. It is shown that for the standard, hard, benchmark examples, KFDDs are on average 35% more compact than Binary Decision Diagrams, with some reductions of up to 75% being observed.
|
Page generated in 0.0613 seconds