• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Material Degradation Studies in Molten Halide Salts

Dsouza, Brendan Harry 16 April 2021 (has links)
This study focused on molten salt purification processes to effectively reduce or eliminate the corrosive contaminants without altering the salt's chemistry and properties. The impurity-driven corrosion behavior of HAYNES® 230® alloy in the molten KCl-MgCl2-NaCl salt was studied at 800 ºC for 100 hours with different salt purity conditions. The H230 alloy exhibited better corrosion resistance in the salt with lower concentration of impurities. Furthermore, it was also found that the contaminants along with salt's own vaporization at high temperatures severely corroded even the non-wetted surface of the alloy. The presence of Mg in its metal form in the salt resulted in an even higher mass-loss possibly due to Mg-Ni interaction. The study also investigated the corrosion characteristics of several nickel and ferrous-based alloys in the molten KCl-MgCl2-NaCl salt. The average mass-loss was in the increasing order of C276 < SS316L < 709-RBB* < IN718 < H230 < 709-RBB < 709-4B2. The corrosion process was driven by the outward diffusion of chromium. However, other factors such as the microstructure of the alloy i.e. its manufacturing, refining, and heat-treatment processes have also shown to influence the corrosion process. Lowering the Cr content and introducing W and Mo in the alloy increased its resistance to corrosion but their non-uniform distribution in the alloy restricted its usefulness. To slow-down the corrosion process, and enhance the material properties, selected alloys were boronized and tested for their compatibility in the molten KCl-MgCl2-NaCl salt. The borided alloys exhibited better resistance to molten salt attack, where the boride layer in the exposed alloy was still intact, non-porous, and strongly adhered to the substrate. The alloys also did not show any compensation in their properties (hardness). It was also found that the boride layer always composed of an outermost silicide composite layer, which is also the weakest and undesired layer as it easily cracks, breaks, or depletes under mechanical and thermal stresses. Various different grades of "virgin" nuclear graphites were also tested in the molten KF-UF4-NaF salt to assist in the selection of tolerable or impermeable graphites for the MSR operational purposes. It was found that molten salt wettability with graphite was poor but it still infiltrated at higher pressure. Additionally, the infiltration also depended on the pore-size and porosity of the graphite. The graphite also showed severe degradation or disintegration of its structure because of induced stresses. / Doctor of Philosophy / Molten salts are considered as potential fuel and coolant candidates in MSRs because of their desirable thermophysical properties and heat-transfer capabilities. However, they pose grave challenges in material selection due to their corrosive nature, which is attributed to the impurities and their concentration (mostly moisture and oxygen-based) in the salt. This study focused on purifying the salt to reduce these contaminants without compromising its composition and properties. The influence of purification processes on the corrosion behavior of HAYNES® 230® alloy was studied in the molten chloride salt with different purity conditions. Various nickel and ferrous-based alloys were also studied for their compatibility in the molten chloride salt. This will assist in expediting the material selection process for various molten salt applications. It was observed that several factors such as alloy composition, its microstructure, impurities in the salt attribute to molten salt corrosion. It was also quite evident that corrosion in molten salts is inevitable and hence, the focus was shifted on slowing down this process by providing protective barriers in the form of coatings (i.e. boronization). The borided (coated) alloys not only improved the corrosion resistance but also enhanced and retained their properties like hardness after exposure to molten salts. Since these studies were conducted under static conditions, a more detailed investigation is needed for the selected alloys by subjecting them to extreme flow-conditions and for longer a duration of time. To achieve this objective, a forced circulation molten salt loop was designed and fabricated to conduct flow corrosion studies for alloys in molten chloride salt. Graphite is another critical component of the MSR where it is used as a moderator or reflector. Generally, molten salts exhibit poor wettability with graphite, but they can still infiltrate (graphites) at higher applied pressures, and result in the degradation or disintegration of graphite's structure, and eventually its failure in the reactor. This study provides infiltration data, and understanding of the degradation of various 'virgin' nuclear graphite grades by the molten fluoride salt. This should assist in the selection of tolerable or impermeable graphite grades for MSR operational purposes.
2

Caracterização de camadas produzidas por boretação e boretação-PVD nos aços AISI H13 e AISI D2 / Characterization of layers produced by PVD-boriding and boriding on AISI H13 and AISI D2 steels

Pereira, Ricardo Gomes 10 July 2013 (has links)
Neste trabalho foram produzidas camadas de boretos de elevadas durezas e resistências ao desgaste nos aços AISI H13 e AISI D2, por meio de tratamento termo-reativo em banho de bórax com adição de 10% de alumínio. Posteriormente foram realizados tratamentos pela técnica PVD sobre as camadas de boretos. As amostras foram caracterizadas por meio de microscopia óptica, microscopia eletrônica de varredura, ensaios de dureza e ensaios de micro desgaste abrasivo com esfera livre. Para ambos os materiais, os tempos de tratamento de boretação foram de 4 horas, seguido de resfriamento em óleo ou ao ar. As camadas produzidas por boretação no caso do aço AISI H13 apresentaram espessura média de 70 &mu;m e para o aço AISI D2 espessura média de 100 &mu;m. As durezas das camadas de boretos produzidas variaram de 1500 a 1700 HV. Os ensaios de micro desgaste abrasivos com esfera livre foram realizados com uso de solução abrasiva de carboneto de silício. Todas as camadas produzidas apresentaram resistências ao desgaste muito superiores as dos substratos. As amostras com tratamentos duplex boretação-PVD apresentaram os melhores desempenhos ao desgaste, seguidas pelo aço AISI D2 e AISI H13 boretados e por último os aços AISI D2 e AISI H13 temperados e revenidos. / Borides layers with high hardness and wear resistances were produced on AISI H13 and AISI D2 steels by thermo-reactive treatment in borax added with 10% of aluminum. Subsequently, treatments by the PVD technique were performed on the layers of borides. The samples were characterized using Optical Microscopy, Scanning Electron Microscopy, hardness testing and free-ball micro abrasive wear test. For both materials, the boriding treatment times were 4 hours long, followed by cooling in oil or air. In the case of AISI H13, the layers produced by boriding showed an average thickness of 70 &mu;m while AISI D2 steel presented an average thickness of 100 &mu;m. The hardness of the produced boride layers ranged from 1500 to 1700 HV. The micro abrasive wear tests were performed using abrasive solution of silicon carbide. All produced layers showed wear resistance much higher than the substrates. Samples with treatments duplex PVD-boriding presented the best wear performances, followed by AISI D2 and AISI H13 borated steels and finally, AISI D2 and AISI H13 steels quenched and tempered.
3

Caracterização de camadas produzidas por boretação e boretação-PVD nos aços AISI H13 e AISI D2 / Characterization of layers produced by PVD-boriding and boriding on AISI H13 and AISI D2 steels

Ricardo Gomes Pereira 10 July 2013 (has links)
Neste trabalho foram produzidas camadas de boretos de elevadas durezas e resistências ao desgaste nos aços AISI H13 e AISI D2, por meio de tratamento termo-reativo em banho de bórax com adição de 10% de alumínio. Posteriormente foram realizados tratamentos pela técnica PVD sobre as camadas de boretos. As amostras foram caracterizadas por meio de microscopia óptica, microscopia eletrônica de varredura, ensaios de dureza e ensaios de micro desgaste abrasivo com esfera livre. Para ambos os materiais, os tempos de tratamento de boretação foram de 4 horas, seguido de resfriamento em óleo ou ao ar. As camadas produzidas por boretação no caso do aço AISI H13 apresentaram espessura média de 70 &mu;m e para o aço AISI D2 espessura média de 100 &mu;m. As durezas das camadas de boretos produzidas variaram de 1500 a 1700 HV. Os ensaios de micro desgaste abrasivos com esfera livre foram realizados com uso de solução abrasiva de carboneto de silício. Todas as camadas produzidas apresentaram resistências ao desgaste muito superiores as dos substratos. As amostras com tratamentos duplex boretação-PVD apresentaram os melhores desempenhos ao desgaste, seguidas pelo aço AISI D2 e AISI H13 boretados e por último os aços AISI D2 e AISI H13 temperados e revenidos. / Borides layers with high hardness and wear resistances were produced on AISI H13 and AISI D2 steels by thermo-reactive treatment in borax added with 10% of aluminum. Subsequently, treatments by the PVD technique were performed on the layers of borides. The samples were characterized using Optical Microscopy, Scanning Electron Microscopy, hardness testing and free-ball micro abrasive wear test. For both materials, the boriding treatment times were 4 hours long, followed by cooling in oil or air. In the case of AISI H13, the layers produced by boriding showed an average thickness of 70 &mu;m while AISI D2 steel presented an average thickness of 100 &mu;m. The hardness of the produced boride layers ranged from 1500 to 1700 HV. The micro abrasive wear tests were performed using abrasive solution of silicon carbide. All produced layers showed wear resistance much higher than the substrates. Samples with treatments duplex PVD-boriding presented the best wear performances, followed by AISI D2 and AISI H13 borated steels and finally, AISI D2 and AISI H13 steels quenched and tempered.
4

Avaliação do comportamento tribológico dos aços ABNT 1020 e 1045 submetidos a tratamentos termoquímicos sólidos / Tribological behavior ol ABNT 1020 and ABNT 1045 steels bubmitted to solids thermochemical treatments

Franco, Claudinei Joaquim 30 October 2014 (has links)
Made available in DSpace on 2016-12-08T17:19:24Z (GMT). No. of bitstreams: 1 Claudinei Franco.pdf: 6129117 bytes, checksum: 6059aaddb2af97db39be8b6299acf549 (MD5) Previous issue date: 2014-10-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The interest for improvements in tribological properties of materials, more specifically in steels with low and medium carbon content are of great importance for mechanical components life time. In this work, thermochemical treatments were carried out on ABNT 1020 and ABNT 1045 steels, in order to compare and evaluate the tribological behavior and also the phases and layers formed, to the different types of treatments which are: boronizing, nitriding and multi component boronizing (also known as duplex treatment). The specific objectives were to plan the different ways of treatment; evaluate and compare the effect of the substrate according to the microstructure, support and interface of the layers formed through the treatments; characterize the wear mechanisms for the different treatments and compare the results of both materials. The thermochemical treatments were carried out, using as basis previous works performed by the powder metallurgy research group. Boronizing and nitriding treatments were carried out by solid means, multi component boronizing treatment was performed in two ways: in the first one, boronizing was followed by nitriding (BN) and the in the second one, nitriding was followed by boronizing (NB). These duplex treatments were performed with the same conditions of time and temperature used for nitriding and boronizing treatments. Pin-on-disk sliding wear tests were performed using WC-Co (hard metal) balls as counter body. Through the test it was possible to evaluate the tribological behaviour. Friction coefficient, volume of removed material and wear mechanisms were determined. The microhardness of the formed layers was measured at the surface and on the cross section of the specimens. X-ray diffraction was used to confirm the formed compounds on nitriding, boronizing and boron-nitriding (duplex) treatments. The results showed an increase in the hardness of the surface layer and a reduction in the amount of removed material (volume) in all thermochemical treatments comparing with the condition of non-treated samples. Regarding the tribological behavior, by evaluating the thermochemically treated samples, the nitrided samples of ABNT 1020 presented the highest amount of removed material (0,078 mm3) and its hardness was 436 HV0.05. The boronized ABNT 1020 steel presented the lower amount of removed material (0,013 mm3). The boronized ABNT 1045 steel reached the highest mean hardness on the surface (1750 HV0.05) and the NB duplex treatment in this material provided the highest hardness of the formed layer, about 2270 HV0.05. / O interesse por melhorias nas propriedades tribológicas de materiais, mais específico em aços com baixo e médio teor de carbono são de grande importância para a vida útil de componentes mecânicos. Neste trabalho foram realizados diversos tratamentos termoquímicos em aços ABNT 1020 e ABNT 1045, com o objetivo de comparar e avaliar o comportamento tribológico e também as fases e camadas formadas, para as diferentes formas de tratamentos que são: boretação, nitretação e boretação multicomponente (também conhecido como tratamento duplex). Os objetivos específicos foram: planejar as formas de tratamentos; avaliar e comparar o efeito do substrato relacionado à microestrutura, ao suporte e interface das camadas formadas nos tratamentos realizados; caracterizar os mecanismos e formas de desgastes para os diversos tratamentos e comparar entre os dois materiais. Os tratamentos termoquímicos foram realizados, utilizando como base trabalhos anteriores que foram realizados no grupo de pesquisa de metalurgia do pó. Os tratamentos de boretação e nitretação foram realizados por via sólida, o tratamento de boretação multicomponente foi realizado de duas formas: na primeira foi realizada a boretação seguido de nitretação (BN) e a segunda foi a nitretação seguido de boretação (NB), nos tratamentos duplex utilizaram-se os mesmos parâmetros de boretação e nitretação. Foram realizados ensaios de desgaste por deslizamento do tipo pino sobre disco, com esferas de WC-Co (metal duro) como contra corpo. Foram avaliados: o coeficiente de atrito, o volume de material removido e os mecanismos de desgaste. A dureza da camada formada foi avaliada por microdureza na superfície e na seção transversal. Difratometria de raios-X foi utilizada para a comprovação da formação das camadas de nitretos, boretos e boro-nitretos (duplex). Os resultados mostraram melhoras principalmente na dureza da camada superficial e redução no volume de material removido, em todos os tratamentos termoquímicos, quando comparado com amostras sem tratamento. Em relação ao comportamento tribológico, avaliando as amostras tratadas termoquimicamente, as amostras nitretadas do aço ABNT 1020 foram as que apresentaram os piores resultados com volume de material removido de 0,078 mm3 e dureza de 436 HV0,05. Já a boretação no aço ABNT 1020 foi o tratamento que apresentou o melhor desempenho em volume de material removido com 0,013 mm3. O aço ABNT 1045 com tratamento de boretação apresentou a maior dureza média na superfície, com 1750 HV0,05 e o tratamento duplex NB neste mesmo material proporcionou a maior dureza na seção transversal, resultante da camada formada de nitretos-boro com 2270 HV0,05.
5

Contribution à la mise au point d'une démarche rationnelle de sélection des traitements de surface : illustration dans le cas des dispositifs de fonderie de l'aluminium. Contribution to a comprehensive selection of surface treatments: the case of aluminium foundry devices.

D'Ans, Pierre J.D. 09 January 2009 (has links)
Sélectionner des traitements de surface pour l’industrie nécessite de prendre en compte : les propriétés à conférer au substrat, la nature et la géométrie de celui-ci et les caractéristiques du milieu extérieur. Certaines combinaisons de ces paramètres rendent difficile la sélection d’un traitement unique, d’où le recours à des multitraitements de surface. Dès lors, se posent les questions suivantes : - Utiliser des multitraitements de surface peut se faire en scindant les différentes requêtes en sous-ensembles, de manière à ce que chaque traitement réponde à l’un d’eux. Dans quel ordre ces requêtes doivent-elles être introduites par rapport au substrat ? - Comment sélectionner les traitements de surface répondant à chaque requête individuelle ? - Comment classer des multitraitements en termes d’adéquation au problème posé ? Dans ce travail, les première et troisième questions sont abordées, en explorant les requêtes concernant habituellement les dispositifs de moulage de l’aluminium : - Résistance aux contraintes d’origine thermique. - Résistance à la corrosion par les métaux fondus. - Résistance au frottement. L’analyse de la bibliographie relative aux traitements de surface utilisés dans ces systèmes a été analysée et des « architectures »-types ont été identifiées (chapitre 3). On prévoit, par exemple, un traitement conférant la résistance à la fatigue superficielle, ainsi qu’un revêtement étanche et résistant à l’aluminium fondu. Une barrière thermique est parfois préconisée. Pour chacune des architectures, des traitements de surface individuels peuvent être sélectionnés. Un « facteur de performance » permettant de classer les solutions par rapport au problème de la fatigue thermique a été construit (chapitre 4) et discuté dans deux situations : - Lorsqu’un revêtement est présent, et que les contraintes d’origine thermique (différence de dilatation thermique couche-substrat) menacent de le rompre lors de l’immersion dans un milieu corrosif à haute température. Des essais de corrosion dans de l’aluminium fondu ont été réalisés sur un acier revêtu par du nitrure de chrome dopé à l’aluminium, synthétisé par déposition physique en phase vapeur (chapitre 5 – collaboration : Inasmet). - Lorsque des variations thermiques rapides menacent de rompre le substrat et la (les) couches. Des essais de fatigue thermique ont été réalisés sur de l’acier à outils pour travail à chaud non traité, boruré ou recouvert d’un multitraitements (zircone yttriée / NiCrAlY / boruration / acier). Le revêtement en zircone yttriée a été obtenu par projection par plasma. L’essai de fatigue thermique a été modélisé et le facteur de performance, discuté (chapitre 6). Au chapitre 7, les architectures-types ont été introduites dans une méthodologie de sélection des multi-traitements de surface, qui a été appliquée dans deux cas : - Celui des moules de fonderie, devant résister à la fatigue thermique et à la corrosion par l’aluminium fondu. Le facteur de performance a été extrapolé à d’autres situations qu’aux chapitres 5 et 6. Les solutions habituellement proposées pour résoudre ce problème sont retrouvées. - Celui de deux pièces en acier frottant l’une contre l’autre en présence d’aluminium fondu. To select surface treatments, one must account for the required functional properties, the substrate features and the solicitations the substrate must endure. Certain combinations of these parameters make it difficult to select a single surface treatment, a reason why several successive treatments are preferred. To select them, one needs to determine: - How to divide the several requests into groups and how to stack up these groups from the substrate to the outer surface, so that each treatment deals with one specific group of requests/properties. - How to select individual layers for each group of properties. - How to rank the multi-treatments in terms of relevance for a given application. In this work, one tries to answer the first and the third questions, by studying the case of aluminium foundry, in which the industrial devices frequently face the following solicitations: - Thermal stress (thermal fatigue, thermal expansion mismatch). - Presence of corrosive molten metal. - Sliding wear. In the literature, several “standard” architectures are proposed (chapter 3), like a diffusion layer reducing superficial fatigue plus a corrosion barrier layer. A thermal barrier coating is also sometimes proposed. For each of these architectures, one can select individual treatments. To rank them, one devised a “performance index” for thermal stress (chap.4), which is discussed for two cases: - For large differences between layer and substrate thermal expansion coefficients, when both are put into contact with a high temperature corrosive medium, the layer may be damaged. One discusses this case by examining the corrosion caused by molten aluminium for a steel substrate coated by anticorrosive chromium nitride doped with aluminium. The layer is produced by physical vapour deposition (chap. 5 – cooperation: Inasmet). - Repeated fast surface temperature transients can also damage the substrate and/or the layer by thermal fatigue. One conducted thermal fatigue tests with samples of hot work tool steel, respectively untreated, simply borided and protected by a multilayer. In the last case, top coat is yttria stabilised zirconia, followed by a nickel superalloy and then a borided layer (undercoat). One synthesized the zirconia coating by plasma spray and one modelled the thermal fatigue (chap. 6). In chap. 7, architectures from chap. 2 are introduced in a multi-treatment selection routine, which is applied in two cases: - Foundry moulds for molten aluminium, withstanding both thermal fatigue and corrosion. The devised performance index is extrapolated beyond the tests of chap. 5 and 6 to treatments for this industrial application, thereby quantifying their respective merits. - A foundry device exposed to molten metal and sliding wear.
6

Contribution à la mise au point d'une démarche rationnelle de sélection des traitements de surface: illustration dans le cas des dispositifs de fonderie de l'aluminium / Contribution to a comprehensive selection of surface treatments: the case of aluminium foundry devices.

D'Ans, Pierre 09 January 2009 (has links)
Sélectionner des traitements de surface pour l’industrie nécessite de prendre en compte :les propriétés à conférer au substrat, la nature et la géométrie de celui-ci et les caractéristiques du milieu extérieur. Certaines combinaisons de ces paramètres rendent difficile la sélection d’un traitement unique, d’où le recours à des multitraitements de surface. Dès lors, se posent les questions suivantes :<p>- Utiliser des multitraitements de surface peut se faire en scindant les différentes requêtes en sous-ensembles, de manière à ce que chaque traitement réponde à l’un d’eux. Dans quel ordre ces requêtes doivent-elles être introduites par rapport au substrat ?<p>- Comment sélectionner les traitements de surface répondant à chaque requête individuelle ?<p>- Comment classer des multitraitements en termes d’adéquation au problème posé ?<p>Dans ce travail, les première et troisième questions sont abordées, en explorant les requêtes concernant habituellement les dispositifs de moulage de l’aluminium :<p>- Résistance aux contraintes d’origine thermique.<p>- Résistance à la corrosion par les métaux fondus.<p>- Résistance au frottement.<p>L’analyse de la bibliographie relative aux traitements de surface utilisés dans ces systèmes a été analysée et des « architectures »-types ont été identifiées (chapitre 3). On prévoit, par exemple, un traitement conférant la résistance à la fatigue superficielle, ainsi qu’un revêtement étanche et résistant à l’aluminium fondu. Une barrière thermique est parfois préconisée.<p>Pour chacune des architectures, des traitements de surface individuels peuvent être sélectionnés. Un « facteur de performance » permettant de classer les solutions par rapport au problème de la fatigue thermique a été construit (chapitre 4) et discuté dans deux situations :<p>- Lorsqu’un revêtement est présent, et que les contraintes d’origine thermique (différence de dilatation thermique couche-substrat) menacent de le rompre lors de l’immersion dans un milieu corrosif à haute température. Des essais de corrosion dans de l’aluminium fondu ont été réalisés sur un acier revêtu par du nitrure de chrome dopé à l’aluminium, synthétisé par déposition physique en phase vapeur (chapitre 5 – collaboration :Inasmet).<p>- Lorsque des variations thermiques rapides menacent de rompre le substrat et la (les) couches. Des essais de fatigue thermique ont été réalisés sur de l’acier à outils pour travail à chaud non traité, boruré ou recouvert d’un multitraitements (zircone yttriée / NiCrAlY / boruration / acier). Le revêtement en zircone yttriée a été obtenu par projection par plasma. L’essai de fatigue thermique a été modélisé et le facteur de performance, discuté (chapitre 6).<p>Au chapitre 7, les architectures-types ont été introduites dans une méthodologie de sélection des multi-traitements de surface, qui a été appliquée dans deux cas :<p>- Celui des moules de fonderie, devant résister à la fatigue thermique et à la corrosion par l’aluminium fondu. Le facteur de performance a été extrapolé à d’autres situations qu’aux chapitres 5 et 6. Les solutions habituellement proposées pour résoudre ce problème sont retrouvées.<p>- Celui de deux pièces en acier frottant l’une contre l’autre en présence d’aluminium fondu.<p><p>To select surface treatments, one must account for the required functional properties, the substrate features and the solicitations the substrate must endure. Certain combinations of these parameters make it difficult to select a single surface treatment, a reason why several successive treatments are preferred. To select them, one needs to determine:<p>- How to divide the several requests into groups and how to stack up these groups from the substrate to the outer surface, so that each treatment deals with one specific group of requests/properties.<p>- How to select individual layers for each group of properties.<p>- How to rank the multi-treatments in terms of relevance for a given application.<p>In this work, one tries to answer the first and the third questions, by studying the case of aluminium foundry, in which the industrial devices frequently face the following solicitations:<p>- Thermal stress (thermal fatigue, thermal expansion mismatch).<p>- Presence of corrosive molten metal.<p>- Sliding wear.<p>In the literature, several “standard” architectures are proposed (chapter 3), like a diffusion layer reducing superficial fatigue plus a corrosion barrier layer. A thermal barrier coating is also sometimes proposed.<p>For each of these architectures, one can select individual treatments. To rank them, one devised a “performance index” for thermal stress (chap.4), which is discussed for two cases:<p>- For large differences between layer and substrate thermal expansion coefficients, when both are put into contact with a high temperature corrosive medium, the layer may be damaged. One discusses this case by examining the corrosion caused by molten aluminium for a steel substrate coated by anticorrosive chromium nitride doped with aluminium. The layer is produced by physical vapour deposition (chap. 5 – cooperation: Inasmet).<p>- Repeated fast surface temperature transients can also damage the substrate and/or the layer by thermal fatigue. One conducted thermal fatigue tests with samples of hot work tool steel, respectively untreated, simply borided and protected by a multilayer. In the last case, top coat is yttria stabilised zirconia, followed by a nickel superalloy and then a borided layer (undercoat). One synthesized the zirconia coating by plasma spray and one modelled the thermal fatigue (chap. 6).<p>In chap. 7, architectures from chap. 2 are introduced in a multi-treatment selection routine, which is applied in two cases:<p>- Foundry moulds for molten aluminium, withstanding both thermal fatigue and corrosion. The devised performance index is extrapolated beyond the tests of chap. 5 and 6 to treatments for this industrial application, thereby quantifying their respective merits.<p>- A foundry device exposed to molten metal and sliding wear.<p><p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.0749 seconds