Spelling suggestions: "subject:"borures"" "subject:"chlorure""
1 |
Préparation de revêtement polyphasés sur le titane : étude de leur tenue à l'oxydation et à l'abrasion.Kabbaj, Mohamed, January 1900 (has links)
Th.--Génie chim. et chim. phys. appl.--Grenoble--I.N.P., 1985.
|
2 |
Matériaux vitreux auto-cicatrisants pour applications hautes températures / Self-healing glass materials for high temperature applicationsCastanié, Sandra 07 October 2013 (has links)
Les matériaux vitreux sont de bons candidats pour répondre à des applications à haute température, comme par exemple des joints de scellement pour piles à combustibles ou des revêtements de protection. Ils restent toutefois des matériaux fragiles susceptibles de se fissurer sous sollicitations thermiques ou mécaniques. Des études ont montré qu’ils présentent la capacité de s'auto-réparer sans intervention extérieure, par mécanisme de cicatrisation autonome. Cette dernière est obtenue par ajout d'un agent de cicatrisation (particules actives) à la matrice vitreuse. Lors de l'apparition d'une fissure, les particules métalliques s'oxydent au contact de l'atmosphère à haute température pour former des oxydes fluides qui s’écoulent dans la fissure et forment un nouveau verre par réaction avec la matrice. Nos travaux ont eu pour objectif de comprendre le fonctionnement et les mécanismes de cicatrisation dans la gamme de température 500-800°C, à partir de particules génératrices des oxydes V2O5 et B2O3. Les influences des paramètres environnementaux et de la composition chimique du système sur la capacité de cicatrisation, ont été étudiées in situ par microscopie environnementale à haute température. Afin de répondre à des applications dans le domaine aéronautique, nous avons fait évoluer le système vers de plus hautes températures. La capacité de cicatrisation de nouveaux composites plus réfractaires a été étudiée dans la gamme 1000-1200°C. La mise en œuvre de matériaux auto-cicatrisants en couches minces permet d'envisager des applications en tant que revêtement. Nous avons ainsi montré la faisabilité de dépôts de ces matériaux par la technique d'ablation laser pulsée. / Glassy materials are good candidates for high temperature applications, such as sealant for solid oxide fuel cells (SOFC) or protective coatings. To overcome cracking of the glass when subjected to thermal cycles, self-healing has been shown to be a promising solution. The self-healing property is defined as the capacity of a material to recover its mechanical integrity and initial properties after destructive actions of external environment or under internal stresses. An autonomous self-healing of cracks can be achieved using a healing agent (active particles) incorporated into the glass matrix. When a crack occurs, the active particles will oxidize by contact with the atmosphere at high temperature to form fluid oxides capable to fill the crack and to form a new glass after reaction with the glass matrix. Our aim intended to understand the self-healing mechanism in the temperature range of 500-800°C, using particles leading to the formation of the V2O5 and B2O3 oxides. Influence of environmental parameters and chemical composition of the system on the self-healing capability has been investigated using high temperature environmental microscopy (HT-ESEM).In order to access to aeronautical applications, we studied the capacity of more refractory composites to produce crack healing at higher temperature (>1000°C). The elaboration of such self-healing materials as thin layers would enable their application as protective coating. The last part of our work aimed at studying the deposition of glass and active particles by pulsed laser deposition.
|
3 |
Influence des nano-particules d'alumine (Al2O3) et de di-borure de titane (TiB2) sur la microstructure et les propriétés de l'alliage Al-Si9-Cu3-Fe1 pour des applications de fonderie à haute pressionVicario Gomez, Iban 19 December 2011 (has links) (PDF)
Ce travail est dédié á l'étude de l'influence de nano-particules de alumina (Al2O3) et de di-borure de titane (TiB2) sur la solidification, la microstructure et les propriétés thermiques et mécaniques de l'alliage d'aluminium renforcés, Al-Si9Cu3Fe1. Les matériaux ont été obtenus par un procédé de fonderie à haute pression en coulant les alliages dans les mêmes conditions que les alliages non renforcés correspondants.On a constaté que les particules de Al2O3 et de TiB2 ont une influence directe sur les caractéristiques de l'alliage telles que la microstructure, la précipitation des phases pendant la solidification et les propriétés mécaniques et électriques. On a ainsi montré que les particules de Al2O3 et de TiB2 peuvent être utilisées pour ajuster les caractéristiques des alliages et obtenir des propriétés spécifiques pour des applications dans les secteurs de matériaux légers.
|
4 |
Influence des nano-particules d’alumine (Al2O3) et de di-borure de titane (TiB2) sur la microstructure et les propriétés de l’alliage Al-Si9-Cu3-Fe1 pour des applications de fonderie à haute pression / Influence of nano-particles of alumina (Al2O3) and titanium di-boride (TiB2) on the microstructure and properties of the alloy Al-Cu 3-Fe1-Si9 for foundry applications to high pressureVicario Gomez, Iban 19 December 2011 (has links)
Ce travail est dédié á l´étude de l´influence de nano-particules de alumina (Al2O3) et de di-borure de titane (TiB2) sur la solidification, la microstructure et les propriétés thermiques et mécaniques de l´alliage d´aluminium renforcés, Al-Si9Cu3Fe1. Les matériaux ont été obtenus par un procédé de fonderie à haute pression en coulant les alliages dans les mêmes conditions que les alliages non renforcés correspondants.On a constaté que les particules de Al2O3 et de TiB2 ont une influence directe sur les caractéristiques de l´alliage telles que la microstructure, la précipitation des phases pendant la solidification et les propriétés mécaniques et électriques. On a ainsi montré que les particules de Al2O3 et de TiB2 peuvent être utilisées pour ajuster les caractéristiques des alliages et obtenir des propriétés spécifiques pour des applications dans les secteurs de matériaux légers. / The work has been focused on the study of the influence of TiB2 and Al2O3 nano-particles (up to 1 wt. %) on the properties and physical features of an aluminium casting alloy, Al-Si9Cu3Fe1.Samples have been obtained through the High Pressure Die Casting (HPDC) process and compared with unreinforced samples obtained at the same conditions. It has been observed that the Al2O3 and TiB2 particles have a direct influence on several features of the alloy such as the microstructure and precipitating phases as well as in the improvement of the soundness and mechanical and electrical properties. Al2O3 and TiB2 particles can be used to tailor the properties of the alloy and to match the specifications of light weight applications
|
5 |
Revêtements céramiques réfractaires à résistance accrue à l’oxydation : corrélation entre mécanisme de diffusion, microstructure et compositionAndreani, Anne-Sophie 13 December 2010 (has links)
Pour améliorer la durée de vie des matériaux à haute température et sous atmosphère oxydante, une solution est l’utilisation d’une protection de surface constituée de matériaux ultra réfractaires non oxydes. Un des objectifs principaux de cette thèse est la sélection et la validation expérimentale de nouvelles compositions chimiques de revêtements utilisés en condition oxydante et corrosive à ultra haute température. Les recherches s’appuient sur une démarche expérimentale physico-chimique se basant sur une approche thermodynamique et thermochimique menée au préalable pour choisir les composés. Les revêtements doivent être stables chimiquement, compatibles thermomécaniquement avec le substrat et adhérent de la température ambiante à celle d’utilisation. De plus, Ils doivent jouer le rôle de barrière environnementale et/ou de barrière thermique.Des tests d’oxydation sont réalisés au four solaire sur les systèmes de matériaux non oxydes massifs élaborés par frittage flash. En parallèle, des composites modèles constitués d’une fibre de carbone revêtue par PVD d’un revêtement métallique ultra réfractaire ont été élaborés puis chauffés par effet Joule afin de réaliser des tests d’oxydation. La compréhension des mécanismes entrant en jeu lors de l’oxydation de ces « nouveaux » revêtements est aussi un des challenges de ce manuscrit. Par ailleurs, elle aide à la classification de ces matériaux selon leur résistance à l’oxydation. / In order to improve material’s lifetime used at a temperature above 2500°C and under oxidizing atmosphere, a solution is to use a surfacing protection constituted of non oxide refractory materials. One of the main objectives of this thesis is to select and experimentally validate new chemical coating compositions which will be used under corrosive and oxidizing atmosphere at ultra high temperature (more than 2000°C). A preliminary thermodynamic and thermo-chemical study aims to select compounds. These compounds are then analyzed with physic-chemical tests. Coatings have to be chemically stable, thermo-mechanically compatible with the substrate and have to stick to the substrate from ambient temperature to more than 2000°C. Moreover, coatings have to act as an environmental barrier and/or as a thermal barrier.Two kinds of oxidation tests are made. On one hand, non oxide massive material’s systems are fabricated by spark plasma sintering in order to be tested at the solar furnace. On the other hand, composite models are fabricated by PVD. A carbon fiber is covered with ultra refractory metallic coating by PVD. Then, these composite models are heated by Joule effect in order to realize oxidation tests. Understanding mechanisms at work during the oxidation of these new coatings is another main objective of this thesis. This understanding will be also useful to classify these materials regarding their resistance to oxidation.
|
6 |
Composites fibreux denses à matrice céramique autocicatrisante élaborés par des procédés hybrides / Dense self-healing ceramic matrix composites fabricated by hybrid processesMagnant, Jérôme 15 November 2010 (has links)
L'élaboration de composites à matrice céramique denses et à fibres continues multidirectionnelles par de nouveaux procédés hybrides a été étudiée. Les procédés développés reposent sur le dépôt d'interphases autour des fibres par Infiltration Chimique en phase Vapeur (CVI) puis sur l'introduction de poudres céramiques au sein de préformes fibreuses par infusion de suspensions aqueuses colloïdales concentrées et stables, et enfin sur la consolidation des préformes soit par frittage flash, soit par imprégnation réactive de métaux liquides.La consolidation des composites par frittage flash est très rapide (palier de maintien en température inférieure à 5 minutes) et permet d'obtenir des composites denses. Durant le frittage, la dégradation des fibres de carbone a pu être évitée en adaptant le cycle de pression afin de limiter l'évolution des gaz au sein du système.La densification totale des composites par imprégnation de métaux liquides a été obtenue en contrôlant attentivement les paramètres d'imprégnation afin d'éviter de piéger des espèces gazeuses au sein des préformes fibreuses.Les composites à fibres de carbone consolidés par frittage flash ou par imprégnation réactive de métaux liquide possèdent un comportement mécanique de type élastique endommageable ainsi qu'une contrainte à rupture en flexion voisine de 300 MPa. Ces composites ont montré leur capacité à s'autocicatriser dans des conditions oxydantes. Comparés aux composites à matrice céramiques élaborés par CVI, les composites densifiés par imprégnation de métaux liquide sont eux parfaitement denses et ont un comportement mécanique en traction à température ambiante similaire avec notamment une contrainte à rupture en traction de 220 MPa. / The fabrication of multidirectional continuous carbon fibers reinforced dense self healing Ceramic Matrix Composites by new short time hybrid processes was studied. The processes developed are based, first, on the deposition of fiber interphase and coating by chemical vapor infiltration, next, on the introduction of ceramic powders into the fibrous preform by Slurry Impregnation and, finally, on the densification of the composite by liquid-phase Spark Plasma Sintering (SPS) or by Reactive Melt Infiltration of silicon (RMI).The homogeneous introduction of the ceramic particles into the multidirectional fiber preforms was realized by slurry impregnation from highly concentrated (> 32 %vol.) and well dispersed aqueous colloid suspensions. The densification of the composites by spark plasma sintering was possible with a short (< 5 minutes) dwelling period in temperature. The chemical degradation of the carbon fibers during the fabrication was prevented by adapting the sintering pressure cycle to inhibit gas evolution inside the system. The composites elaborated are dense. The fully densification of the composites by RMI was realised by carefully controlling the impregnation parameters to avoid to entrap some gaseous species inside the fiber preforms. Our carbon fiber reinforced ceramic matrix composites processed by Spark Plasma Sintering or Reactive Melt Infiltration have a damageable mechanical behaviour with a room temperature bending stress at failure around 300 MPa and have shown their ability to self-healing in oxidizing conditions. Compared to the CMC processed by CVI, the composites processed with a final consolidation step by RMI are fully dense and have a similar room temperature tensile test behaviour with an ultimate tensile stress around 220 MPa.
|
Page generated in 0.0419 seconds