• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 16
  • 8
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 89
  • 89
  • 89
  • 31
  • 21
  • 20
  • 16
  • 16
  • 15
  • 15
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Exploring Many-body Physics with Ultracold Atoms

LeBlanc, Lindsay Jane 31 August 2011 (has links)
The emergence of many-body physical phenomena from the quantum mechanical properties of atoms can be studied using ultracold alkali gases. The ability to manipulate both Bose-Einstein condensates (BECs) and degenerate Fermi gases (DFGs) with designer potential energy landscapes, variable interaction strengths and out-of-equilibrium initial conditions provides the opportunity to investigate collective behaviour under diverse conditions. With an appropriately chosen wavelength, optical standing waves provide a lattice potential for one target species while ignoring another spectator species. A “tune-in” scheme provides an especially strong potential for the target and works best for Li-Na, Li-K, and K-Na mixtures, while a “tune-out” scheme zeros the potential for the spectator, and is pre- ferred for Li-Cs, K-Rb, Rb-Cs, K-Cs, and 39K-40K mixtures. Species-selective lattices provide unique environments for studying many-body behaviour by allowing for a phonon-like background, providing for effective mass tuning, and presenting opportunities for increasing the phase-space density of one species. Ferromagnetism is manifest in a two-component DFG when the energetically preferred many-body configuration segregates components. Within the local density approximation (LDA), the characteristic energies and the three-body loss rate of the system all give an observable signature of the crossover to this ferromagnetic state in a trapped DFG when interactions are increased beyond kF a(0) = 1.84. Numerical simulations of an extension to the LDA that account for magnetization gradients show that a hedgehog spin texture emerges as the lowest energy configuration in the ferromagnetic regime. Explorations of strong interactions in 40K constitute the first steps towards the realization of ferromagnetism in a trapped 40K gas. The many-body dynamics of a 87Rb BEC in a double well potential are driven by spatial phase gradients and depend on the character of the junction. The amplitude and frequency characteristics of the transport across a tunable barrier show a crossover between two paradigms of superfluidity: Josephson plasma oscillations emerge for high barriers, where transport is via tunnelling, while hydrodynamic behaviour dominates for lower barriers. The phase dependence of the many-body dynamics is also evident in the observation of macroscopic quantum self trapping. Gross-Pitaevskii calculations facilitate the interpretation of system dynamics, but do not describe the observed damping.
22

Exploring Many-body Physics with Ultracold Atoms

LeBlanc, Lindsay Jane 31 August 2011 (has links)
The emergence of many-body physical phenomena from the quantum mechanical properties of atoms can be studied using ultracold alkali gases. The ability to manipulate both Bose-Einstein condensates (BECs) and degenerate Fermi gases (DFGs) with designer potential energy landscapes, variable interaction strengths and out-of-equilibrium initial conditions provides the opportunity to investigate collective behaviour under diverse conditions. With an appropriately chosen wavelength, optical standing waves provide a lattice potential for one target species while ignoring another spectator species. A “tune-in” scheme provides an especially strong potential for the target and works best for Li-Na, Li-K, and K-Na mixtures, while a “tune-out” scheme zeros the potential for the spectator, and is pre- ferred for Li-Cs, K-Rb, Rb-Cs, K-Cs, and 39K-40K mixtures. Species-selective lattices provide unique environments for studying many-body behaviour by allowing for a phonon-like background, providing for effective mass tuning, and presenting opportunities for increasing the phase-space density of one species. Ferromagnetism is manifest in a two-component DFG when the energetically preferred many-body configuration segregates components. Within the local density approximation (LDA), the characteristic energies and the three-body loss rate of the system all give an observable signature of the crossover to this ferromagnetic state in a trapped DFG when interactions are increased beyond kF a(0) = 1.84. Numerical simulations of an extension to the LDA that account for magnetization gradients show that a hedgehog spin texture emerges as the lowest energy configuration in the ferromagnetic regime. Explorations of strong interactions in 40K constitute the first steps towards the realization of ferromagnetism in a trapped 40K gas. The many-body dynamics of a 87Rb BEC in a double well potential are driven by spatial phase gradients and depend on the character of the junction. The amplitude and frequency characteristics of the transport across a tunable barrier show a crossover between two paradigms of superfluidity: Josephson plasma oscillations emerge for high barriers, where transport is via tunnelling, while hydrodynamic behaviour dominates for lower barriers. The phase dependence of the many-body dynamics is also evident in the observation of macroscopic quantum self trapping. Gross-Pitaevskii calculations facilitate the interpretation of system dynamics, but do not describe the observed damping.
23

Modern problems in Statistical Physics of Bose-Einstein Condensation and in Electrodynamics of Free Electron Lasers

Dorfman, Konstantin E. 2009 May 1900 (has links)
In this dissertation, I have studied theoretical problems in statistical physics and electrodynamics of Bose particles, namely, mesoscopic effects in statistics of Bose- Einstein condensate (BEC) of atoms and electromagnetic waveguide effects of planar Bragg structures in Free Electron Lasers. A mesoscopic system of a trapped gas of Bose atoms is the most difficult for the theoretical analysis in quantum statistical physics since it cannot be studied by neither a quantum mechanics of the simple microscopic systems of one or very few atoms nor a standard statistical physics of the macroscopic systems that implies a thermodynamic limit. I present analytical formulas and numerical calculations for the moments and cumulants of BEC fluctuations in both ideal and weakly interacting gas. I analyze the universal scaling and structure of the BEC statistics in a mesoscopic ideal gas in the critical region. I present an exactly solvable Gaussian model of BEC in a degenerate interacting gas and its solution that confirms the universality and constraint-cut-off origin of the strongly non-Gaussian BEC statistics. I consider a two-energy-level trap with arbitrary degeneracy of an upper level and find an analytical solution for the condensate statistics in a mesoscopic ideal gas. I show how to model BEC in real traps by BEC in the two-level or three-level traps. I study wave propagation in the open oversized planar Bragg waveguides, in particular, in a planar metal waveguide with corrugation. I show that a step perturbation in a corrugation phase provides a high selectivity over transverse modes. I present a new Free Electron Laser (FEL) amplifier scheme, in which the radiation is guided by the planar Bragg structure with slightly corrugated walls and a sheet electron beam is traveling at a significant angle to the waveguide axis. By means of nonlinear analysis, I demonstrate that the proposed scheme provides an effective mode filtration and control over the structure of the output radiation and allows one to achieve amplification up to 30 dB in the existing FEL machines.
24

Rapidly Rotating Ultracold Atoms In Harmonic Traps

Ghazanfari, Nader 01 June 2011 (has links) (PDF)
In this study we investigate the properties of trapped atoms subjected to rapid rotations. The study is divided into two distinct parts, one for fermions, another for bosons. In the case of the degenerate Fermi gas we explore the density structure of non-interacting cold atoms when they are rotated rapidly. On the other hand, for rapidly rotating two component Bose condensate, we search for new lattice structures in the presence of contact and dipolar interactions. First, the density structure of Fermi gases in a rotating trap is investigated. We focus on the anisotropic trap case, in which two distinct regimes, two and one dimensional regimes, depending on rotation frequency and anisotropy are observed. Two regimes can be illustrated by a simple description of maximum number of states between two Landau levels, which is strongly related to the dimensionality of the system. The regimes are separated from each other by a minimum point in this description. For small anisotropy values the density profiles show a step structure where each step is demonstrated by an elliptical plateau. Each plateau represents a Landau level with a constant density. The local density approximation describes the two dimensional regime with a perfect similarity in the structure of fermion density. The case for one dimensional regime is a little different from the two dimensional case. For large anisotropy values the Friedel oscillation is the dominant aspect of the density profiles. The density profiles show gaussian structure along the direction of strong trapping, and a semicircular form with prominent oscillations along the weak confining direction. Again, the system is nicely described by local density approximation in this regime. A smooth crossover between two regimes is observed, with a switching from a step structure profile to a soft edge transition with Friedel oscillations. At finite temperatures, the step structures are smeared out in two dimension. In one dimensional regime the Friedel oscillations are cleaned as soon as the temperature is turned on. The second part of the study is devoted to the investigation of different lattice structures in two component Bose condensates subjected to very fast rotation, this time in the presence of interactions. We explore the existence of new vortex lattice structures for dipolar two component condensates scanning a wide range of interaction strengths. We introduce a phase diagram as a function of intra and inter-component interactions showing different type of vortex lattice structures. New types of lattice structures, overlapped square and overlapped rectangular, emerge as a result of dipolar interactions and s-wave interaction for a two component condensate. The region where the attractive inter-component interactions dominate the repulsive interactions, the overlapped lattices are formed. The intra-component interactions, which defines the behavior of each component inside, result in different type of lattices by changing the strength of interactions. Two different limits of phase diagram reproduce the results of ordinary two component and dipolar one component Bose condensates. The results of calculation are in agreement with the results of previous studies for two regimes.
25

Dynamics of Feshbach molecule production

Hanna, Thomas Mark January 2008 (has links)
The variation of a magnetic field in the vicinity of a zero-energy resonance allows highly vibrationally excited molecules (‘Feshbach molecules’) to be produced from an ultracold atomic gas. In this thesis, we study the dynamics of this process. We begin by studying the dissociation of Feshbach molecules, showing that in the limit of a sudden jump the shape of the spectrum of dissociated atoms can act as a probe of the zero-energy resonance. For some resonances, such jumps are within reach of current experiments. We also study the intermediate region between sudden jumps and asymptotically wide, linear ramps. It is shown from a precise derivation how the latter limit leads to a universal spectrum with a shape independent of the implementation of the two-body physics, provided that the near-resonant scattering properties are correctly modelled. We then turn to the dynamics of Feshbach molecule production from thermal and condensed gases. Our microscopic quantum dynamics approach includes the exact twobody evolution as an input to the many-body calculations. We show that in the long-time limit, and the Markov limit for the interactions, the non-Markovian Boltzmann equation (NMBE) we derive for the one-body density matrix reduces to the normal Boltzmann equation. In the limit of short times and small depletion of the atomic gas, the molecule production efficiency can be calculated by thermally averaging the two-body transition probability density. This thermal averaging technique is applied to studies of the formation of Feshbach molecules using a magnetic field modulation that is near-resonant with the molecular bound state energy. The continuum is shown to have a significant effect on both the dynamics and efficiency of this process. We examine the dependence of the molecule production efficiency on the duration, amplitude and frequency of the modulation, as well as the temperature and density of the gas. This method of producing molecules is effective for a wide range of bound state energies, but requires sufficient variation of the two-body energy levels with magnetic field. Lastly, we implement the NMBE for the case of a fast linear ramp across a Feshbach resonance. The solution of this equation is made feasible by including a large part of the required computation in the kernel, which is calculated in advance. The NMBE allows predictions of the molecule production efficiency which go beyond the thermal averaging technique by accounting for the depletion and rethermalisation of the continuum. In the limit of small depletions, the two approaches give the same results. As the depletion increases, the two approaches differ due to many-body effects limiting the maximum possible molecule production efficiency. We have observed this in our simulations by considering higher-density gases. We have therefore shown the suitability and practicability of this beyond mean-field approach for application to further problems in the production of Feshbach molecules from ultracold gases.
26

Characteristic relaxation rates of a Bose gas in the classical, quantum and condensed regimes

Gust, Erich D. 31 October 2011 (has links)
We obtain the characteristic relaxation rates and relaxation modes of a Bose gas in three regimes. The classical regime corresponds to a classical gas of hard spheres and the quantum regime corresponds to an interacting quantum Bose gas with no Bose-Einstein condensate present. In the condensed regime a Bose-Einstein condensate is present and modifies the behavior of the gas. In each regime there is a different kinetic equation that describes the evolution of the relevant distribution function. The classical kinetic equation is the Boltzmann equation and the quantum kinetic equation with no condensate present is the Uehling-Uhlenbeck equation. When a condensate is present, we derive a new kinetic equation that describes the evolution of the momentum distribution of Bogoliubov excitations or bogolons. For each of the three kinetic equations, we linearize the collision integral and use it to generate the elements of a collision matrix. The eigenvalues of this matrix give us the characteristic relaxation rates and the eigenvectors give us the relaxation modes. We report numerical results for the eigenvalues in each regime as the particle species, density and temperature of the gas are varied. / text
27

Targeted Energy Transfer in Bose-Einstein Condensates

Karhu, Robin January 2013 (has links)
Targeted Energy Transfer is a resonance phenomenon in coupled anharmonic oscillators. In this thesis we investigate if the concept of Targeted Energy Transfer is applicable to Bose-Einsteain condensates in optical lattices. The model used to describe Bose-Einstein condensates in optical lattices is based on the Gross-Pitaevskii equation. Targeted Energy Transfer in these systems would correspond to energy being transferred from one lattice site to another. We also try to expand the concept of Targeted Energy Transfer to a system consisting of three sites, where one of the sites are considered a perturbation to the system. We have concluded that it is possible to achieve Targeted Energy Transfer in a three-site system. The set-up of the system will in some of the cases studied lead to interesting properties, such as more energy being transferred to the acceptor site than what was initially localized on the donor site.
28

Thermalisation, correlations and entanglement in Bose-Einstein condensates

Andrew James Ferris Unknown Date (has links)
This thesis investigates thermalisation, correlations and entanglement in Bose-Einstein condensates. Bose-Einstein condensates are ultra-cold collections of identical bosonic atoms which accumulate in a single quantum state, forming a mesoscopic quantum object. They are clean and controllable quantum many-body systems that permit an unprecedented degree of experimental flexibility compared to other physical systems. Further, a tractable microscopic theory exists which allows a direct and powerful comparison between theory and experiment, propelling the field of quantum atom optics forward at an incredible pace. Here we explore some of the fundamental frontiers of the field, examining how non-classical correlations and entanglement can be created and measured, as well as how non-classical effects can lead to the rapid heating of atom clouds. We first investigate correlations between two weakly coupled condensates, a system analogous to a superconducting Josephson junction. The ground state of this system contains non-classical number correlation arising from the repulsion between the atoms. Such states are of interest because they may lead to more precise measurement devices such as atomic gyroscopes. Unfortunately thermal fluctuations can destroy these correlations, and great care is needed to experimentally observe non-classical effects. We show that adiabatic evolution can drive the isolated quantum system out of thermal equilibrium and decrease thermal noise, in agreement with a recent experiment [Esteve et al. Nature 455, 1216 (2008)]. This technique may be valuable for observing and using quantum correlated states in the future. Next, we analyse the rapid heating that occurs when a condensate is placed in a moving periodic potential. The dynamical instability responsible for the heating was the subject of much uncertainty, which we suggest was due to the inability of the mean-field approximation to account for important spontaneous scattering processes. We show that a model including non-classical spontaneous scattering can describe dynamical instabilities correctly in each of the regimes where they have been observed, and in particular we compare our simulations to an experiment performed at the University of Otago deep inside the spontaneous scattering regime. Finally, we proposed a method to create and detect entangled atomic wave-packets. Entangled atoms are interesting from a fundamental perspective, and may prove useful in future quantum information and precision measurement technologies. Entanglement is generated by interactions, such as atomic collisions in Bose-Einstein condensates. We analyse the type of entanglement generated via atomic collisions and introduce an abstract scheme for detecting entanglement and demonstrating the Einstein-Podolsky-Rosen paradox with ultra-cold atoms. We further this result by proposing an experiment where entangled wave-packets are created and detected. The entanglement is generated by the pairwise scattering that causes the instabilities in moving periodic potentials mentioned above. By careful arrangement, the instability process can be controlled to to produce two well-defined atomic wave-packets. The presence of entanglement can be proven by applying a series of laser pulses to interfere the wave-packets and then measuring the output populations. Realising this experiment is feasible with current technology.
29

Thermalisation, correlations and entanglement in Bose-Einstein condensates

Andrew James Ferris Unknown Date (has links)
This thesis investigates thermalisation, correlations and entanglement in Bose-Einstein condensates. Bose-Einstein condensates are ultra-cold collections of identical bosonic atoms which accumulate in a single quantum state, forming a mesoscopic quantum object. They are clean and controllable quantum many-body systems that permit an unprecedented degree of experimental flexibility compared to other physical systems. Further, a tractable microscopic theory exists which allows a direct and powerful comparison between theory and experiment, propelling the field of quantum atom optics forward at an incredible pace. Here we explore some of the fundamental frontiers of the field, examining how non-classical correlations and entanglement can be created and measured, as well as how non-classical effects can lead to the rapid heating of atom clouds. We first investigate correlations between two weakly coupled condensates, a system analogous to a superconducting Josephson junction. The ground state of this system contains non-classical number correlation arising from the repulsion between the atoms. Such states are of interest because they may lead to more precise measurement devices such as atomic gyroscopes. Unfortunately thermal fluctuations can destroy these correlations, and great care is needed to experimentally observe non-classical effects. We show that adiabatic evolution can drive the isolated quantum system out of thermal equilibrium and decrease thermal noise, in agreement with a recent experiment [Esteve et al. Nature 455, 1216 (2008)]. This technique may be valuable for observing and using quantum correlated states in the future. Next, we analyse the rapid heating that occurs when a condensate is placed in a moving periodic potential. The dynamical instability responsible for the heating was the subject of much uncertainty, which we suggest was due to the inability of the mean-field approximation to account for important spontaneous scattering processes. We show that a model including non-classical spontaneous scattering can describe dynamical instabilities correctly in each of the regimes where they have been observed, and in particular we compare our simulations to an experiment performed at the University of Otago deep inside the spontaneous scattering regime. Finally, we proposed a method to create and detect entangled atomic wave-packets. Entangled atoms are interesting from a fundamental perspective, and may prove useful in future quantum information and precision measurement technologies. Entanglement is generated by interactions, such as atomic collisions in Bose-Einstein condensates. We analyse the type of entanglement generated via atomic collisions and introduce an abstract scheme for detecting entanglement and demonstrating the Einstein-Podolsky-Rosen paradox with ultra-cold atoms. We further this result by proposing an experiment where entangled wave-packets are created and detected. The entanglement is generated by the pairwise scattering that causes the instabilities in moving periodic potentials mentioned above. By careful arrangement, the instability process can be controlled to to produce two well-defined atomic wave-packets. The presence of entanglement can be proven by applying a series of laser pulses to interfere the wave-packets and then measuring the output populations. Realising this experiment is feasible with current technology.
30

Dinâmica de um condensado de Bose-Eintein contendo sólitons / Bose-Einstein condensate dynamics with solitons

André de Freitas Smaira 05 February 2015 (has links)
Condensados de Bose-Einstein (BEC) são sistemas macroscópicos excelentes para a observação do comportamento quântico da matéria. Desde sua obtenção experimental em gases atômicos alcalinos diluídos aprisionados por campos magnéticos, há importantes aspectos relacionados a esse sistema que foram intensamente explorados, como os modos coletivos do BEC harmonicamente aprisionado, seu tunelamento através de barreiras de potencial e os estados excitados desse sistema, incluindo vórtice e sóliton. O último consiste de pacote de onda localizado, que propaga sem mudança de forma. Nesse trabalho, investigamos os novos aspectos que surgem da dinâmica de um sistema composto (condensado aprisionado contendo um sóliton). Há muitos estudos tratando cada parte separadamente: estado fundamental do BEC ou um sóliton em um BEC infinito uniforme estacionário. Estamos nos baseando nessas análises prévias, além da simulação numérica de campo médio do nosso sistema submetido a diferentes condições iniciais (BEC aprisionado no mínimo do potencial harmônico ou BEC deslocado na armadilha contendo um sóliton, além de uma deformação no potencial) para caracterizar a dinâmica desse sistema. Alguns dos nossos resultados puderam ser explicados por meio de predições analítica da chamada aproximação de Thomas-Fermi. Ao final, comparamos as simulações de campo médio (equação de Gross-Pitaevskii) com as advindas da teoria de múltiplos orbitais a fim de justificar o regime de validade da nossa teoria. / Bose-Einstein Condensates (BEC) are excellent macroscopic systems to observe the quantum behavior of matter. Since it experimental production in dilute atomic alkali gases trapped by magnetic fields, there are important aspects related to this system that have been intensely explored, like the collective modes of the harmonically trapped BEC, its tunneling through a potential barrier and the excited states of this system, that include the vortex and soliton. The latter consist of localized disturbances, which propagate without change of form. In this work, we investigate the singular aspects that coming from the dynamics of a composite system (trapped BEC containing a soliton). There are many studies that treat each part separately, that include a fundamental state BEC or a soliton inside a uniform infinite extent stationary BEC. We are basing on these previous analyses, besides mean-field numeric simulating our particular system submitted to diferent initial conditions (minimum harmonic potential trapped BEC or dislocated trapped BEC plus a soliton, in addition to a deformation in the potential) to characterize the tunneling dynamics. Some of our results could be explained using analytical predictions of the so called Thomas-Fermi approximation. At the end, we compar the meanfield simulations (Gross-Pitavskii equation) with the simulations from the multiple orbitals theory to justify the validity regime of our theory.

Page generated in 0.0766 seconds