• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • Tagged with
  • 35
  • 35
  • 35
  • 14
  • 12
  • 12
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Hypersonic Boundary-Layer Transition on a Blunt Ogive: Measuring Controlled Nose Tip Roughness

Owen States (18422706) 23 April 2024 (has links)
<p dir="ltr">Prediction of boundary-layer transition is a critical element of hypersonic vehicle design</p><p dir="ltr">due to the impact transition has on boundary-layer separation, heat transfer, and aerodynamic</p><p dir="ltr">control. Transition is affected by many factors including surface roughness. The</p><p dir="ltr">roughness on a hypersonic vehicle can cause a boundary-layer to become turbulent. However,</p><p dir="ltr">there is a limited understanding of the impacts that roughness can have, and the conditions</p><p dir="ltr">under which it is important.</p><p dir="ltr">The rocket-sled track at Holloman Air Force Base was selected as a ground-test facility</p><p dir="ltr">for transition measurements. The present work is about understanding the mechanism of</p><p dir="ltr">transition on blunt ogives or blunt cones with moderate nose radii, as it appears that nosetip</p><p dir="ltr">roughness affects boundary-layer transition on the afterbody for moderate nose radii. A</p><p dir="ltr">single test-track shot is to be executed for a blunt ogive to determine if the test track can</p><p dir="ltr">make useful measurements of boundary-layer transition.</p><p dir="ltr">Initially, the present research used a boundary-layer solver to estimate target roughnesses</p><p dir="ltr">that would be applied to the nose tip. Preliminary analysis was conducted on test cases for</p><p dir="ltr">sharp cones and blunt cones. However, due to time constraints, the target roughnesses were</p><p dir="ltr">then estimated with a higher fidelity code by Brad Wheaton of JHU APL. Two separate</p><p dir="ltr">roughness targets were established for the upper and lower sides of the hemispherical nosetip.</p><p dir="ltr">The focus of this work then shifted to measurements of the roughness that was applied</p><p dir="ltr">by others to the hemisphere nose tip for a blunt ogive. Utilizing the Zygo ZeGage 3D optical</p><p dir="ltr">profiler, roughness scans were collected both directly under the profiler head and indirectly</p><p dir="ltr">using rubber molds. Profilometer measurements were also recorded. Twelve iterations were</p><p dir="ltr">completed to allow the polisher to develop appropriate procedures for applying the roughness,</p><p dir="ltr">given the material and curvature. The first five iterations involved roughness applied to</p><p dir="ltr">cylindrical-shaped test areas. After achieving the target roughnesses on these test areas,</p><p dir="ltr">the hemispherical ends of test specimens were then polished and measured until both the</p><p dir="ltr">rough and smooth halves met the roughness target. During this time, the three roughness measurement</p><p dir="ltr">techniques were refined until good agreement was reached between them. When the roughness-application and </p><p dir="ltr">roughness-measurement techniques were sufficiently mature,</p><p dir="ltr">the actual blunt-ogive nose tip was then polished until the roughness target was achieved.</p>
22

Effects of Free Stream Turbulence on Compressor Cascade Performance

Douglas, Justin W. 13 March 2001 (has links)
The effects of grid generated free-stream turbulence on compressor cascade performance was measured experimentally in the Virginia Tech blow-down wind tunnel. The parameter of key interest was the behavior of the measured total pressure loss coefficient with and without generated free-stream turbulence. A staggered cascade of nine airfoils was tested at a range of Mach numbers between 0.59 and 0.88. The airfoils were tested at both the lowest loss level cascade angle and extreme positive and negative cascade angles about this condition. The cascade was tested in a Reynolds number range based on the chord length of approximately 1.2-2x106. A passive turbulent grid was used as the turbulence-generating device, it produced a turbulent intensity of approximately 1.6%. The total pressure loss coefficient was reduced by 11-56% at both the "lowest loss level" and more positive cascade angles for both high and low Mach numbers. Oil Visualization and blade static pressure measurements were performed in order to gain a qualitative understanding of the loss reduction mechanism. The results indicate that the effectiveness of an increasing turbulent free-stream on loss reduction, at transonic Mach numbers, depends on whether the shock wave on the suction surface is strong enough to completely separate the boundary layer. At negative cascade angles, increasing free-stream turbulence proved to have a negligible influence on the pressure loss coefficient. At cascade angles where transition exists within a laminar separation bubble, increasing free-stream turbulence suppressed the extent of the laminar separation bubble and led to an earlier turbulent reattachment. / Master of Science
23

Hypersonic Flight Vehicle Roughness Characterization and Effects of Roughness Arrays on Crossflow under Mach 6 Quiet Flow

Cassandra Jennifer Butler (18431619) 26 April 2024 (has links)
<p dir="ltr">Experiments were performed in the Boeing/AFOSR Mach-6 Quiet Tunnel to study the effect of flight-derived discrete roughness elements repeated in an axisymmetric pattern near the nose of a sharp 7° cone. The aim of the roughness array was to simulate natural vehicle roughness and attempt to introduce a deterministic roughness pattern with the ability to cancel out the instabilities caused by the natural roughness. The cone was pitched at a 6° of attack to determine the three-dimensional flow field effects of the roughness elements. Tests were also ran at 0° of attack for comparison. Quiet flow testing included the designed-for freestream unit Reynolds number of 10.8x10<sup>6</sup>, and Reynolds numbers above and below. In noisy flow, comparable Reynolds numbers were also tested at to isolate the effects of noise in a conventional flow wind tunnel.</p><p dir="ltr">Infrared thermography and surface pressure sensors were used to document the behavior of the boundary layer. It was found that the roughness pattern was in general unsuccessful in controlling the added boundary layer instabilities as intended at 6° of attack, but it did create different instability amplitudes and heating patterns. Additionally, it was determined to reduce Mack's second-mode instability amplitudes at 0° of attack.</p><p dir="ltr">Additionally, work was done to document and characterize the roughness patterns found on samples of hypersonic glide vehicles PRIME (SV-5D or X-23) and ASSET (ASV-3). These samples were taken in the form of molded impressions of the surface which were able to be analyzed with an optical profilometer and considered for future experimental distributed roughness studies.</p>
24

Transition Detection for Low Speed Wind Tunnel Testing Using Infrared Thermography

Joseph, Liselle AnnMarie 26 March 2014 (has links)
Transition is an important phenomenon in large scale, commercial, wind tunnel testing at low speeds because it is an excellent indicator of an airfoil performance. It is difficult to estimate transition through numerical techniques because of the complex nature of viscous flow. Therefore experimental techniques can be essential. Over the transition region the rate of heat transfer shows significant increases which can be detected using infrared thermography. This technique has been used predominantly at high speeds, on small models made of insulated materials, and for short test runs. Large scale testing has not been widely undertaken because the high sensitivity of transition to external factors makes it difficult to detect. The present study records the process undertaken to develop, implement and validate a transition detection system for continual use in the Virginia Tech Stability Wind Tunnel: a low speed, commercial wind tunnel where large, aluminium models are tested. The final system developed comprises of two high resolution FLIR A655sc infrared cameras; four 63.5-mm diameter circular windows; aluminium models covered in 0.8-mm silicone rubber insulation and a top layer of ConTact© paper; and a series of 25.4-mm wide rubber silicone fiberglass insulated heaters mounted inside the model and controlled externally by experimenters. This system produces images or videos of the model and the associated transition location, which is later extracted through image processing methods to give a final transition location in percentage chord. The system was validated using two DU96-W-180 airfoils of different chord lengths in the Virginia Tech Stability Wind Tunnel, each tested two months apart. The system proved to be robust and efficient, while not affecting the airfoil performance or any other system in use in the wind tunnel. Transition results produced by the system were compared to measurements obtained from pressure data and stethoscope tests as well as the numerical predictions of XFOIL. The transition results from all four methods showed excellent agreement with each other for the two models, for at least two Reynolds numbers and for several angles of attack on both suction and pressure side of the model. The agreement of data obtained under such different conditions and at different times suggests that the infrared thermography system efficiently and accurately detects transition for large aluminium models at low speeds. / Master of Science
25

CALIBRATION OF HIGH-FREQUENCY PRESSURE SENSORS USING LOW-PRESSURE SHOCK WAVES

Mark Wason (6623855) 14 May 2019 (has links)
<div>Many important measurements of low-amplitude instabilities related to hypersonic laminar-turbulent boundary-layer transition have been successfully performed with 1-MHz PCB132 pressure sensors. However, there is large uncertainty in measurements made with PCB132 sensors due to their poorly understood response at high frequency. The current work continues efforts to better characterize the PCB132 sensor with a low-pressure shock tube, using the pressure change across the incident shock as an approximate step input. </div><div> </div><div> New vacuum-control valves provide precise control of pre-run pressures in the shock tube, generally to within 1\% of the desired pressure. Measurements of the static-pressure step across the shock made with Kulite sensors showed high consistency for similar pre-run pressures. Skewing of the incident shock was measured by PCB132 sensors, and was found to be negligible across a range of pressure ratios and static-pressure steps. Incident-shock speed decreases along the shock tube, as expected. Vibrational effects on the PCB132 sensor response are significantly lower in the final section of the driven tube.</div><div> </div><div> Approximate frequency responses were computed from pitot-mode responses. The frequency-response amplitude varied by a factor of 5 between 200--1000 kHz due to significant resonance peaks. Measurements with blinded PCB132 sensors indicate that the resonances in the frequency response are not due to vibration. </div><div> </div><div> Using the approximate frequency response measured with the shock tube to correct the spectra of wind-tunnel data produced inconclusive results. Correcting pitot-mode PCB132 wind-tunnel data removed a possible resonance peak near 700 kHz, but did not agree with the spectrum of a reference sensor in the range of 11--100 kHz. </div>
26

An Examination of Configurations for Using Infrared to Measure Boundary Layer Transition

Freels, Justin Reed 2012 August 1900 (has links)
Infrared transition location estimates can be fast and useful measurements in wind tunnel and flight tests. Because turbulent boundary layers have a much higher rate of convective heat transfer than laminar boundary layers, a difference in surface temperature can be observed between turbulent and laminar regions of an airfoil at a different temperature than the free stream air temperature. Various implementations of this technique are examined in a wind tunnel. These include using a heat lamp as an external source and circulating fluid inside of the airfoil. Furthermore, ABS plastic and aluminum airfoils are tested with and without coatings such as black paint and surface wraps. The results show that thermal conduction within the model and surface reflections are the driving issues in designing an IR system for detecting transition. Aluminum has a high thermal diffusivity so is a poor choice for this method. However, its performance can be improved using an insulating layer. Internal fluid circulation was far more successful than the heat lamp because it eliminates the reflected IR due to the heat lamp. However, using smooth surface wraps can mitigate reflection issues caused by the heat lamps by reducing the scatter within the reflection, producing an IR image with fewer contaminating reflections.
27

Computational Evaluation of a Transonic Laminar-Flow Wing Glove Design

Roberts, Matthew William 2012 May 1900 (has links)
The aerodynamic benefits of laminar flow have long made it a sought-after attribute in aircraft design. By laminarizing portions of an aircraft, such as the wing or empennage, significant reductions in drag could be achieved, reducing fuel burn rate and increasing range. In addition to environmental benefits, the economic implications of improved fuel efficiency could be substantial due to the upward trend of fuel prices. This is especially true for the commercial aviation industry, where fuel usage is high and fuel expense as a percent of total operating cost is high. Transition from laminar to turbulent flow can be caused by several different transition mechanisms, but the crossflow instability present in swept-wing boundary layers remains the primary obstacle to overcome. One promising technique that could be used to control the crossflow instability is the use of spanwise-periodic discrete roughness elements (DREs). The Flight Research Laboratory (FRL) at Texas A&M University has already shown that an array of DREs can successfully delay transition beyond its natural location in flight at chord Reynolds numbers of 8.0x10^6. The next step is to apply DRE technology at Reynolds numbers between 20x10^6 and 30x10^6, characteristic of transport aircraft. NASA's Environmentally Responsible Aviation Project has sponsored a transonic laminar-flow wing glove experiment further exploring the capabilities of DRE technology. The experiment will be carried out jointly by FRL, the NASA Langley Research Center, and the NASA Dryden Flight Research Center. Upon completion of a wing glove design, a thorough computational evaluation was necessary to determine if the design can meet the experimental requirements. First, representative CAD models of the testbed aircraft and wing glove were created. Next, a computational grid was generated employing these CAD models. Following this step, full-aircraft CFD flowfield calculations were completed at a variety of flight conditions. Finally, these flowfield data were used to perform boundary-layer stability calculations for the wing glove. Based on the results generated by flowfield and stability calculations, conclusions and recommendations regarding design effectiveness were made, providing guidance for the experiment as it moved beyond the design phase.
28

Development of an Infrared Thermography System to Measure Boundary Layer Transition in a Low Speed Wind Tunnel Testing Environment

Horton, Damien 01 March 2021 (has links) (PDF)
The use of infrared thermography for boundary layer detection was evaluated for use in the Cal Poly Low Speed Wind Tunnel (LSWT) and recommendations for the successful use of this technique were developed. In cooperation with Joby Aviation, an infinite wing model was designed, manufactured and tested for use in the LSWT. The wing was designed around a custom airfoil profile specific for this project, where the nearly-flat pressure gradient at a zero pitch angle would delay the chordwise onset of boundary layer transition. Steady-state, RANS numerical simulations predicted the onset of transition to occur at 0.75 x/c for the design Reynolds Number condition of 6.25x105. The wing was manufactured from 3D printed aluminum, with a wall thickness of 0.125 inches and a chord length of 13.78 inches. Two central rows of static pressure taps were used, each with 12 functional chordwise locations. The taps were able to generate strong correlation to the numerically predicted pressure coefficient distribution. The use of an infrared camera visualized and confirmed the presence of boundary layer transition at the chordline location anticipated by the early simulations. To do so, the model was pre-heated such that the differential cooling properties of laminar and turbulent flow would generate a clear temperature gradient on the surface correlating to boundary layer transition. Adjustment of the model’s pitch angle demonstrated a change in the onset location of boundary layer transition during the infrared testing. The change of onset location was seen to move forward along the chordline as the aerodynamic angle of attack was increased. Testing with a Preston Tube system allowed for the interpolation of local skin friction coefficient values at each static tap location. Application of both laminar and turbulent empirical assumptions, when compared to numerical expectations, allowed for the qualitative assessment of boundary layer transition onset. Overall, the wing model developed for this research proved capable of producing quality and repetitive results for the experimental goals it was designed to meet. The model will next be used in continued tests which will further explore the use of infrared thermography.
29

Microphone-Based Pressure Diagnostics for Boundary Layer Transition

Lillywhite, Spencer Everett 01 July 2013 (has links) (PDF)
An experimental investigation of the use low-cost microphones for unsteady total pressure measurement to detect transition from laminar to turbulent boundary layer flow has been conducted. Two small electret condenser microphones, the Knowles FG-23629 and the FG-23742, were used to measure the pressure fluctuations and considered for possible integration with an autonomous boundary layer measurement system. Procedures to determine the microphones’ maximum sound pressure levels and frequency response using an acoustic source provided by a speaker and a reference microphone. These studies showed that both microphones possess a very flat frequency response and that the max SPL of the FG-23629 is 10 Pa and the max SPL of the FG-23742 is greater than 23 Pa. Several sensor-probe configurations were developed, and the three best were evaluated in wind tunnel tests. Measurements of the total pressure spectrum, time signal, and the root-mean-square were taken in the boundary layer on a sharp-nose flat plate in the Cal Poly 2 foot by 2 foot wind tunnel at dynamic pressures ranging between 135 Pa and 1350 Pa, corresponding to freestream velocities of 15 m/s to 47 m/s. The pressure spectra were collected to assess the impact of the probe on the microphone frequency response. The two configurations with long probes showed peaks in the pressure spectra corresponding to the resonant frequencies of the probe. The root-mean-square of the pressure fluctuations did not vary much between the different probes. The root-mean-square of the pressure fluctuations collected in turbulent boundary layers were found to be 10% of the local freestream dynamic pressure and decreased to 3.5% as the freestream dynamic pressure was increased. The RMS of the pressure fluctuations taken in both laminar boundary layers and in the freestream varied between 0.5% and 2.5% of the local freestream dynamic pressure. The large difference between the RMS of the pressure fluctuations in laminar and turbulent boundary layers taken at low dynamic pressures suggests that this system is indeed capable of distinguishing between laminar and turbulent flow. The drop in the RMS of the pressure fluctuations as dynamic pressure increased is indicative of insufficient maximum sound pressure level of the microphone resulting in clipping of the pressure fluctuation; this is confirmed through inspection of the pressure time signal and spectrum. Thus, a microphone with higher maximum sound pressure level is needed for turbulence detection at higher dynamic pressures. Alternatively, it may be possible to attenuate the total pressure fluctuation signal.
30

A NOVEL SUBFILTER CLOSURE FOR COMPRESSIBLE FLOWS AND ITS APPLICATION TO HYPERSONIC BOUNDARY LAYER TRANSITION

Victor de Carvalho Britto Sousa (13141503) 22 July 2022 (has links)
<p>The present dissertation focuses on the numerical solution of compressible flows with an emphasis on simulations of transitional hypersonic boundary layers. Initially, general concepts such as the governing equations, numerical approximations and theoretical modeling strategies are addressed. These are used as a basis to introduce two innovative techniques, the Quasi-Spectral Viscosity (QSV) method, applied to high-order finite difference settings and the Legendre Spectral Viscosity (LSV) approach, used in high-order flux reconstruction schemes. Such techniques are derived based on the mathematical formalism of the filtered compressible Navier-Stokes equations. While the latter perspective is only typically used for turbulence modeling in the context of Large-Eddy Simulations (LES), both the QSV and LSV subfilter scale (SFS) closure models are capable of performing simulations in the presence of shock-discontinuities. On top of that, the QSV approach is also shown to support dynamic subfilter turbulence modeling capabilities.</p> <p>QSV’s innovation lies in the introduction of a physical-space implementation of a spectral-like subfilter scale (SFS) dissipation term by leveraging residuals of filter operations, achiev- ing two goals: (1) estimating the energy of the resolved solution near the grid cutoff; (2) imposing a plateau-cusp shape to the spectral distribution of the added dissipation. The QSV approach was tested in a variety of flows to showcase its capability to act interchangeably as a shock capturing method or as a SFS turbulence closure. QSV performs well compared to previous eddy-viscosity closures and shock capturing methods. In a supersonic TGV flow, a case which exhibits shock/turbulence interactions, QSV alone outperforms the simple super- position of separate numerical treatments for SFS turbulence and shocks. QSV’s combined capability of simulating shocks and turbulence independently, as well as simultaneously, effectively achieves the unification of shock capturing and Large-Eddy Simulation.</p> <p>The LSV method extends the QSV idea to discontinuous numerical schemes making it suitable for unstructured solvers. LSV exploits the set of hierarchical basis functions formed by the Legendre polynomials to extract the information on the energy content near the resolution limit and estimate the overall magnitude of the required SFS dissipative terms, resulting in a scheme that dynamically activates only in cells where nonlinear behavior is important. Additionally, the modulation of such terms in the Legendre spectral space allows for the concentration of the dissipative action at small scales. The proposed method is tested in canonical shock-dominated flow setups in both one and two dimensions. These include the 1D Burgers’ problem, a 1D shock tube, a 1D shock-entropy wave interaction, a 2D inviscid shock-vortex interaction and a 2D double Mach reflection. Results showcase a high-degree of resolution power, achieving accurate results with a small number of degrees of freedom, and robustness, being able to capture shocks associated with the Burgers’ equation and the 1D shock tube within a single cell with discretization orders 120 and higher.</p> <p>After the introduction of these methods, the QSV-LES approach is leveraged to perform numerical simulations of hypersonic boundary layer transition delay on a 7<sup>◦</sup>-half-angle cone for both sharp and 2.5 mm-nose tip radii due to porosity representative of carbon-fibre-reinforced carbon-matrix ceramics (C/C) in the Reynolds number range Re<sub>m</sub> = 2.43 · 106 – 6.40 · 10<sup>6</sup> m<sup>−1</sup> at the freestream Mach number of M<sub>∞</sub> = 7.4. A low-order impedance model was fitted through experimental measurements of acoustic absorption taken at discrete frequencies yielding a continuous representation in the frequency domain that was imposed in the simulations via a broadband time domain impedance boundary condition (TDIBC). The stability of the base flow is studied over impermeable and porous walls via pulse-perturbed axisymmetric simulations with second-mode spatial growth rates matching linear predictions. This shows that the QSV-LES approach is able to dynamically deactivate its dissipative action in laminar portions of the flow making it possible to accurately capture the boundary layer’s instability dynamics. Three-dimensional transitional LES were then performed with the introduction of grid independent pseudorandom pressure perturbations. Comparison against previous experiments were made regarding the frequency content of the disturbances in the transitional region with fairly good agreement capturing the shift to lower frequencies. Such shift is caused by the formation of near-wall low-temperature streaks that concentrate the pressure disturbances at locations with locally thicker boundary layers forming trapped wavetrains that can persist into the turbulent region. Additionally, it is shown that the presence of a porous wall representative of a C/C material does not affect turbulence significantly and simply shifts its onset downstream.</p>

Page generated in 0.0944 seconds