• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 27
  • 7
  • 3
  • 2
  • 2
  • Tagged with
  • 97
  • 97
  • 64
  • 19
  • 19
  • 19
  • 18
  • 15
  • 13
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Universal Aqueous-Based Antifouling Coatings for Multi-Material Devices

Goh, Sharon January 2017 (has links)
Biofouling is an ongoing problem in the development and usage of biomaterials for biomedical implants, microfluidic devices, and water-based sensors. Antifouling coatings involving surface modification of biomaterials is widely utilized to reduce unwanted protein adsorption and cell adhesion. Surface modification strategies, however, are reliant on the working material’s chemical properties. Thus, published procedures are often not applicable to a wide range of material classes. This constitutes a serious limitation in using surface modification on assembled multi-material devices, i.e on whole device modification. The objective of this research is to develop an antifouling coating with non-aggressive reaction conditions that can universally modify polymers and other material classes. Two strategies using polydopamine (PDA) as an anchor for polyethylene glycol (PEG) surface attachment were investigated: (1) PDA-PEG backfilled with bovine serum albumin (BSA), and (2) PDA-PEG with light activated perfluorophenyl azide (PFPA) conjugated to the PEG. Three materials varying in surface wettability were studied to evaluate the coatings for multi-material applications: porous polycarbonate membrane (PC), polydimethyl siloxane (PDMS), and soda lime glass cover slips. Atomic force microscopy (AFM) and ellipsometry studies revealed substantial structural differences of PDA. Differences in PDA surface roughness affected PEG grafting in solution (the first method), with higher PEG coverage achieved on PC with intermediate surface roughness to PDMS and glass. Radiolabeled Fg adsorption and E. coli adhesion experiments showed reduced fouling on all PDA-PEG modified materials when backfilled with BSA. The ability for BSA to penetrate the PEG layer indicated that low PEG grafting densities were achieved using this grafting-to approach. The use of a photoactive labeling agent, PFPA, to tether PEG was proposed to improve PEG grafting on PDA. The PFPA-PEG modification protocol was optimized by quantifying Fg adsorption. Two treatments of PFPA-PEG were required to fully block PDA active sites. Fg adsorption was not significantly improved on PFPA-PEG modified PC and glass when backfilled with BSA, indicating sufficient PEG coverage of PDA. High Fg adsorption on PFPA-PEG surfaces indicate that high density PEG brushes were still not achieved with this method. PDMS surfaces were damaged with this procedure due to increased surface handling in the protocol. This is the first, to our knowledge, successful demonstration of PFPA modification on PDA surfaces. Photopatterning of polymer-based materials can be achieved, providing opportunities for utilising new materials in cell patterned platforms. Due to low PEG coverage on PDA surfaces from solution and using PFPA, ultra-low protein adsorption cannot be achieved using these aqueous-based methods. Antifouling modifications using PDA and PEG should be applied for short-term cell studies. / Thesis / Master of Applied Science (MASc)
12

Effects of Binding Affinity between Bovine Serum Albumin and Platinum Drugs

Puckett, Nathan 01 April 2017 (has links)
Platinum complex drugs such as cisplatin have been used as highly successful chemotherapy drugs since the 1970s. We are interested in how the ligands attached to cisplatin analogs influences their reactivity with biologically relevant targets along with time and amount. For this study, reactions were conducted to determine the reactivity between different platinum compounds and the protein bovine serum albumin. Various platinum compounds with different ligands were reacted in varying amounts with albumin in ammonium acetate buffer for either 1 hour, 4 hours, or 24 hours. Each reaction was quenched after the designated reaction time by dialysis and the platinum bound to the protein was determined by use of ICP. LC-MS was used to find exact peptide residues platinum complexes prefer to bind with but was found to be ineffective. Results show that time has a more significant affect on binding over amount of platinum present. In respect to changing the leaving or carrier ligands on the platinum complex, these changes on the complex did not affect binding significantly with bovine serum albumin. Triamine platinum complexes also seem to bind significantly more than diamine platinum complexes along with anionic form platinum complexes binding significantly better than the cationic form platinum complexes.
13

Caracterização do aço inoxidável austenítico UNS S31254 em meio de NaCI 0,11 mol L-1 visando seu emprego em implantes ortopédicos / Electrochemical characterization of UNS S31254 austenitic stainless steel in 0.11 mol L-1 NaCl medium in order to propose its application in orthopaedic implants

Afonso, Monica Luisa Chaves de Andrade 27 September 2006 (has links)
Foi feita a caracterização eletroquímica do aço inoxidável austenítico UNS S31254 em meio de NaCl 0,11 mol L-1 na ausência e presença de soro albumina bovina (BSA) visando seu emprego em implantes ortopédicos. Foram empregadas como técnicas: medidas de potencial de circuito aberto, curvas de polarização, cronoamperometria, EIE, XPS, MEV, EDS e EEO. O comportamento eletroquímico do aço 254 foi comparado com o de outros aços empregados em implantes ortopédicos (ISO 5832-9, ASTM F138, e AISI 316L) na ausência e presença de BSA. O aço 254 se mostrou semelhante ao ISO 5832-9: encontra-se passivado desde o potencial de corrosão até o de transpassivação; a presença de inclusões de óxidos de cálcio e alumínio no aço 254 foi considerada a responsável por um potencial de transpassivação 100 mV menos positivo do que o observado com o aço ISO 5832-9. Foi detectada. além de óxido de Cr(III), a presença de Mo na forma Mo(VI) no filme passivo do aço 254. A ação da BSA, ora passivante ora catalisadora, depende de sua concentração, da natureza do substrato metálico, e do potencial na interfase metal-solução. A BSA modifica o mecanismo de oxidação do aço 254 e inibe seletivamente a dissolução dos seus elementos constituintes, em particular, níquel e cromo. / The electrochemical characterization of UNS S31254 has been made in 0.11 mol L-1 NaCl medium in the absence and presence of bovine serum albumin (BSA) in order to propose its application in orthopaedic implants. The techniques employed were: open circuit potential measurements, polarization curves, chronoamperometry, EIS, XPS, SEM, EDS and EEO. The electrochemical behavior of 254 SS was compared to that observed for ISO 5832-9, ASTM F138 and AISI 316L stainless steels, used in orthopedic implants, in the absence and presence of BSA. 254 SS is similar to ISO 5832-9 SS: it is passivated on the potential range between the corrosion and the transpassivation potentials; the presence of calcium and aluminum oxides can be responsible for the shift of about 100 mV to less positive potentials on the transpassivation potential when compared to ISO 5832-9 SS. The presence of Mo(VI) was detected beside Cr(III) as passivating film for 254 SS. BSA action depends on its concentration, the nature of the metallic substract and on the potential in the metal-solution interphase. BSA changes the oxidation mechanism of 254 SS and promotes the selective dissolution of the elements particularly nickel and chromium.
14

Interação da proteína albumina do soro bovino (BSA) com substratos sintéticos / Interaction of the protein bovine serum albumin (BSA) with synthetic substrates.

Ferreira, Ernando Silva 19 February 2010 (has links)
A interface formada por materiais biológicos e materiais sintéticos tem grande importância em aplicações biomédicas, tais como o desenvolvimento de biomateriais para implantes médicos, que tem como processo essencial a deposição de proteínas na superfície dos biomateriais, e ainda não é bem compreendido no nível molecular. Algumas proteínas sofrem mudanças conformacionais após a adsorção na interface sólido-líquido, afetando suas funções ou propriedades, e algumas técnicas podem medir mudanças conformacionais em interfaces sólido. É possível estudar a fluorescência intrínseca de proteínas: a posição do máximo na faixa espectral da fluorescência, a eficiência quântica e o tempo de vida de fluorescência são indicadores de mudanças no ambiente local de grupos de moléculas de proteína fluorescente. Por outro lado, Nanopartículas de ouro têm atraído muita atenção pela sua afinidade com materiais biológicos e suas propriedades ópticas. Nesta tese, estudamos a viabilidade de substratos de vidro, quartzo, mica e ITO (óxido de índio e estanho) modificado com quitosana, phtalocyanines (Ni, Fe e Ni) e poli(alilanina hidroclorada) (PAH) na adsorção de BSA em forma dos filmes produzidos pela técnica camada por camada. O sistema foi estudado por UV-Vis e espectroscopia de fluorescência estática e resolvida no tempo. A caracterização morfológica dos filmes foi realizada por microscopia de força atômica e microscopia óptica. Os resultados mostram que os filmes de BSA / HAP cresceram com eficiência quatro vezes maior do que os filmes feitos de quitosana, que o quartzo tem a melhor janela de trabalho de UV-vis e há uma relação entre o pH da BSA e o tempo vida de fluorescência do filme resultante. As nanopartículas de ouro foram produzidas pela redução química e estabilizada por quatro diferentes métodos. O crescimento das nanopartículas foi monitorado por UV-vis spectroscopy. A carga de superfície das nanopartículas e da BSA foi estimado em vários valores de pH por medidas de potencial zeta. Os resultados indicaram que as nanopartículas têm cargas negativas na faixa de pH estudada. Soluções de BSA foram preparadas em diferentes valores de pH, e levadas para interagir com as nanopartículas de ouro. Os dados de supressão de fluorescência da BSA mostraram uma maior afinidade da BSA com nanopartículas estabilizadas com sacarose, com pH próximo do ponto isoelétrico (IP) estimado para BSA. / The interface formed by biological materials and synthetic materials has great importance in biomedical applications such as the development of biomaterials for medical implants, which has as an essential process of protein adsorption on the surface of biomaterials, and is not yet well understood in the molecular level. Some proteins undergo conformational changes after adsorption at solid-liquid interfaces, affecting their functions or properties, and few techniques can measure conformational changes in solid interfaces. It is possible to study the intrinsic fluorescence of proteins: the position of the maximum in the spectral range of fluorescence, the quantum efficiency and lifetime of fluorescence are indicators of change in the local environment of fluorescent groups of protein molecules. On the other hand, gold nanopartículas have attracted much attention for its affinity with biological materials and their optical properties. In this thesis we study the feasibility of glass substrates, quartz, mica and ITO (Indium tin oxide) modified with chitosan, phtalocyanines (Ni, Fe and Ni) and poly (allylamine hydrochloride) (PAH) on the adsorption of BSA in the form of films produced by the layer by layer technique. The system was studied by UV-Vis and static and time-resolved fluorescence spectroscopy. Morphological characterization of the films was performed by atomic force microscopy and optical microscopy. The results indicate that the films of BSA/PAH grew with efficiency four times greater than the films made of chitosan, that the quartz has the best working window for UV-vis and there is a relationship between the pH of the BSA and lifetime of fluorescence of the resulting film. Gold nanoparticles were produced by chemical reduction and stabilized by four different methods. The growth of nanoparticles was monitored by UV-vis spectroscopy. The surface charge of nanoparticles and the BSA was estimated at various pH values by zeta potential measurements. The results indicated that the nanoparticles have negative charges in the pH range studied. BSA solutions were prepared at various pH values, were taken to interact with gold nanoparticles. Fluorescence quenching data of BSA showed a greater affinity of the BSA with nanoparticles stabilized with sucrose, at pH near the isoelectric point (IEP) estimated for BSA.
15

Steroid Sensitive Neurons and Male Rat Mating Behavior

Huddleston, Gloria Gradine 03 August 2006 (has links)
Male rat mating is a suite of individual behaviors mediated by the actions of two metabolites of testosterone (T), dihydrotestosterone (DHT) and estradiol (E2), on the brain. Individually, neither metabolite fully maintains or restores mating in castrated males, but both combined are as effective as T. Two hormone-responsive areas of the brain, the medial preoptic area (MPO) and the medial amygdala (MEA), are crucial for mating. These studies ask: by what mechanism(s) does E2 act in the MPO and MEA? We blocked the conversion of T to E2 in the MEA of intact male rats and sexual behavior was not maintained. We then infused antisense oligodeoxynucleotides (ODNs) to estrogen receptor-alpha (ER-á) mRNA bilaterally to the MPO or the MEA of intact male rats to block ER-á expression. ODN infusion of the MPO attenuated mating but infusion of the MEA had no effect. These results suggest that ER-á is the behaviorally relevant estrogen receptor (ER) in the MPO but not in the MEA. ER was originally described in the cytoplasm and nucleus of cells. Recently plasma membrane associated ERs (mER) have been reported. We conjugated E2 to Bovine Serum Albumin (BSA-E2), a large protein that will not penetrate the plasma membrane, thus restricting the action of E2 to mER, and chronically delivered it to the MPO and MEA. BSA-E2 maintained mating if put in the MPO, but not in the MEA, suggesting a surface action of E2 is sufficient in the MPO. The MPO and MEA are reciprocally connected and probably constitute elements of a larger, steroid-responsive neural network that mediates male mating behavior. To begin to describe this purported circuit, we injected Pseudorabies virus (PRV) into the prostate gland and dually labeled PRV-immunoreactive cells for ER or androgen receptors. We found dual labeling in a forebrain diencephalic circuit that includes the MPO, the medial preoptic nucleus, bed nucleus of stria terminalis, the zona incerta, the periaqueductal gray and other areas that presumably mediate both autonomic and motor aspects of male mating. Together, the results of these studies begin to elucidate locations and mechanisms of E2 mediation of male sexual behavior.
16

Chiral Separations By Enzyme Enhanced Ultrafiltration: Fractionation Of Racemic Benzoin

Olceroglu, Ayse Hande 01 August 2006 (has links) (PDF)
In this study, a methodology for separation of chiral molecules, by using enhanced ultrafiltration system was developed. Benzoin was the model chiral molecule studied. In the scope of developing this methodology, some parameters were investigated in the preliminary ultrafiltration experiments in order to set the operation conditions for enhanced ultrafiltration experiments. Due to the slight solubility of benzoin in pure water, 15% (v/v) Polyethylene glycol (PEG 400) and 30 % (v/v) Dimethyl sulfoxide (DMSO) were selected as cosolvents. Because of the high retention capacity of RC-10000 Da membranes for benzoin, a membrane saturation strategy was developed. In polymer enhanced ultrafiltration (PEUF) experiments bovine serum albumin (BSA) was used as ligand. Effects of ligand concentration and pH on total benzoin retention and on enantiomeric excess (ee %) were investigated. Benzoin concentration was almost kept constant at ~10 ppm and ~50 ppm for 15% (v/v) PEG 400 and 30 % (v/v) DMSO cosolvents, respectively. It was observed that the increase either in pH or in BSA concentration yielded an increase in total benzoin retention. In 15% (v/v) PEG 400-water, with BSA concentration of 10000 ppm, at pH 10, total benzoin retention reached to 48.7%. For this cosolvent, at different pH values and at different BSA concentrations, all ee % values were about or less than 10%. When 50000 ppm BSA was dissolved in 30 % (v/v) DMSO-water, total benzoin retention increased to 41.3% at pH 10 and ee % reached 16.7 % at pH 11. In enzyme enhanced ultrafiltration (EEUF) experiments, specific to benzoin, apo form of Benzaldehyde Lyase (BAL, E.C. 4.1.2.38) was used as ligand. These experiments were performed with constant ~ 10 ppm benzoin concentration in only 15% (v/v) PEG 400 &ndash / water solvent. Effect of BAL concentration on total benzoin retention and ee% was investigated. It was found that / for all the studied BAL concentrations in the range of 650- 1936 ppm total benzoin retention and ee % were kept almost constant at ~75% and ~60%, respectively.
17

Recombinant expression of cytochrome P450-2D6 and its application in tamoxifen metabolism

Edwin, Munyai Vukosi January 2018 (has links)
Magister Scientiae - MSc (Biotechnology) / Breast cancer is regarded as the most common form of cancer in women and it comprises of approximately 23 % of female cancers, while affecting women at any age range. For oestrogen receptor positive patients, tamoxifen is used as a prescribed medication for breast cancer therapy. However, tamoxifen in its natural form is not active to achieve the required treatment and prevention of breast cells proliferation. Since tamoxifen is a prodrug, it need to be converted into its active form, endoxifen, for which it is achieved by the action of the cytochrome P450 enzymes. Cytochrome P450 2D6 (CYP2D6) is a member of cytochrome P450 enzymes for which are superfamily of heme enzymes characterised by their ability to catalyse the oxidative reactions of compounds, including the pathway of tamoxifen metabolism. However, due to polymorphism that lead to inactive phenotypes of CYP2D6 in this gene, there is a challenge of diagnosing if a patient can metabolise tamoxifen or not. The current diagnostic tool, Amplichip CYP450, for CYP2D6 is based on genotypes, and it lead to uncertainness as to whether the presence of functionalCYP2D6 alleles of CYP2D6 may lead to coding of active protein, thus leading to wrong treatment measures and overdose of tamoxifen. Electrochemical techniques have provided reliable, simple, quick, and sensitive methods for the determination of drug metabolism by enzymes. Therefore, it is important to develop a CYP2D6 phenotype-based sensor to detect and tell whether a particular individual can metabolise the drug or not.
18

Caracterização do aço inoxidável austenítico UNS S31254 em meio de NaCI 0,11 mol L-1 visando seu emprego em implantes ortopédicos / Electrochemical characterization of UNS S31254 austenitic stainless steel in 0.11 mol L-1 NaCl medium in order to propose its application in orthopaedic implants

Monica Luisa Chaves de Andrade Afonso 27 September 2006 (has links)
Foi feita a caracterização eletroquímica do aço inoxidável austenítico UNS S31254 em meio de NaCl 0,11 mol L-1 na ausência e presença de soro albumina bovina (BSA) visando seu emprego em implantes ortopédicos. Foram empregadas como técnicas: medidas de potencial de circuito aberto, curvas de polarização, cronoamperometria, EIE, XPS, MEV, EDS e EEO. O comportamento eletroquímico do aço 254 foi comparado com o de outros aços empregados em implantes ortopédicos (ISO 5832-9, ASTM F138, e AISI 316L) na ausência e presença de BSA. O aço 254 se mostrou semelhante ao ISO 5832-9: encontra-se passivado desde o potencial de corrosão até o de transpassivação; a presença de inclusões de óxidos de cálcio e alumínio no aço 254 foi considerada a responsável por um potencial de transpassivação 100 mV menos positivo do que o observado com o aço ISO 5832-9. Foi detectada. além de óxido de Cr(III), a presença de Mo na forma Mo(VI) no filme passivo do aço 254. A ação da BSA, ora passivante ora catalisadora, depende de sua concentração, da natureza do substrato metálico, e do potencial na interfase metal-solução. A BSA modifica o mecanismo de oxidação do aço 254 e inibe seletivamente a dissolução dos seus elementos constituintes, em particular, níquel e cromo. / The electrochemical characterization of UNS S31254 has been made in 0.11 mol L-1 NaCl medium in the absence and presence of bovine serum albumin (BSA) in order to propose its application in orthopaedic implants. The techniques employed were: open circuit potential measurements, polarization curves, chronoamperometry, EIS, XPS, SEM, EDS and EEO. The electrochemical behavior of 254 SS was compared to that observed for ISO 5832-9, ASTM F138 and AISI 316L stainless steels, used in orthopedic implants, in the absence and presence of BSA. 254 SS is similar to ISO 5832-9 SS: it is passivated on the potential range between the corrosion and the transpassivation potentials; the presence of calcium and aluminum oxides can be responsible for the shift of about 100 mV to less positive potentials on the transpassivation potential when compared to ISO 5832-9 SS. The presence of Mo(VI) was detected beside Cr(III) as passivating film for 254 SS. BSA action depends on its concentration, the nature of the metallic substract and on the potential in the metal-solution interphase. BSA changes the oxidation mechanism of 254 SS and promotes the selective dissolution of the elements particularly nickel and chromium.
19

Interação da proteína albumina do soro bovino (BSA) com substratos sintéticos / Interaction of the protein bovine serum albumin (BSA) with synthetic substrates.

Ernando Silva Ferreira 19 February 2010 (has links)
A interface formada por materiais biológicos e materiais sintéticos tem grande importância em aplicações biomédicas, tais como o desenvolvimento de biomateriais para implantes médicos, que tem como processo essencial a deposição de proteínas na superfície dos biomateriais, e ainda não é bem compreendido no nível molecular. Algumas proteínas sofrem mudanças conformacionais após a adsorção na interface sólido-líquido, afetando suas funções ou propriedades, e algumas técnicas podem medir mudanças conformacionais em interfaces sólido. É possível estudar a fluorescência intrínseca de proteínas: a posição do máximo na faixa espectral da fluorescência, a eficiência quântica e o tempo de vida de fluorescência são indicadores de mudanças no ambiente local de grupos de moléculas de proteína fluorescente. Por outro lado, Nanopartículas de ouro têm atraído muita atenção pela sua afinidade com materiais biológicos e suas propriedades ópticas. Nesta tese, estudamos a viabilidade de substratos de vidro, quartzo, mica e ITO (óxido de índio e estanho) modificado com quitosana, phtalocyanines (Ni, Fe e Ni) e poli(alilanina hidroclorada) (PAH) na adsorção de BSA em forma dos filmes produzidos pela técnica camada por camada. O sistema foi estudado por UV-Vis e espectroscopia de fluorescência estática e resolvida no tempo. A caracterização morfológica dos filmes foi realizada por microscopia de força atômica e microscopia óptica. Os resultados mostram que os filmes de BSA / HAP cresceram com eficiência quatro vezes maior do que os filmes feitos de quitosana, que o quartzo tem a melhor janela de trabalho de UV-vis e há uma relação entre o pH da BSA e o tempo vida de fluorescência do filme resultante. As nanopartículas de ouro foram produzidas pela redução química e estabilizada por quatro diferentes métodos. O crescimento das nanopartículas foi monitorado por UV-vis spectroscopy. A carga de superfície das nanopartículas e da BSA foi estimado em vários valores de pH por medidas de potencial zeta. Os resultados indicaram que as nanopartículas têm cargas negativas na faixa de pH estudada. Soluções de BSA foram preparadas em diferentes valores de pH, e levadas para interagir com as nanopartículas de ouro. Os dados de supressão de fluorescência da BSA mostraram uma maior afinidade da BSA com nanopartículas estabilizadas com sacarose, com pH próximo do ponto isoelétrico (IP) estimado para BSA. / The interface formed by biological materials and synthetic materials has great importance in biomedical applications such as the development of biomaterials for medical implants, which has as an essential process of protein adsorption on the surface of biomaterials, and is not yet well understood in the molecular level. Some proteins undergo conformational changes after adsorption at solid-liquid interfaces, affecting their functions or properties, and few techniques can measure conformational changes in solid interfaces. It is possible to study the intrinsic fluorescence of proteins: the position of the maximum in the spectral range of fluorescence, the quantum efficiency and lifetime of fluorescence are indicators of change in the local environment of fluorescent groups of protein molecules. On the other hand, gold nanopartículas have attracted much attention for its affinity with biological materials and their optical properties. In this thesis we study the feasibility of glass substrates, quartz, mica and ITO (Indium tin oxide) modified with chitosan, phtalocyanines (Ni, Fe and Ni) and poly (allylamine hydrochloride) (PAH) on the adsorption of BSA in the form of films produced by the layer by layer technique. The system was studied by UV-Vis and static and time-resolved fluorescence spectroscopy. Morphological characterization of the films was performed by atomic force microscopy and optical microscopy. The results indicate that the films of BSA/PAH grew with efficiency four times greater than the films made of chitosan, that the quartz has the best working window for UV-vis and there is a relationship between the pH of the BSA and lifetime of fluorescence of the resulting film. Gold nanoparticles were produced by chemical reduction and stabilized by four different methods. The growth of nanoparticles was monitored by UV-vis spectroscopy. The surface charge of nanoparticles and the BSA was estimated at various pH values by zeta potential measurements. The results indicated that the nanoparticles have negative charges in the pH range studied. BSA solutions were prepared at various pH values, were taken to interact with gold nanoparticles. Fluorescence quenching data of BSA showed a greater affinity of the BSA with nanoparticles stabilized with sucrose, at pH near the isoelectric point (IEP) estimated for BSA.
20

Development of novel hypervalent iodine conjugation strategies towards pneumococcal conjugate vaccines

Fumbatha, Sinethemba January 2013 (has links)
Masters of Science / Invasive pneumococcal disease (IPD), which includes potentially fatal conditions such as meningitis, septicaemia and pneumonia poses a threat in children aged <5 years, pneumonia being the leading cause of child mortality worldwide. Even though capsular polysaccharides are the main antigens involved in the immunity to encapsulated bacteria, it was found that in children in that age group, the immune system was unresponsive. Conjugate vaccines however induce immunologic memory and provide long-term protective immunity. Therefore the aim of this project was to develop novel conjugation strategies towards a pneumococcal conjugate vaccines and focuses mainly on the serotypes that are a burden to the African continent. The chemistry involved in developing a conjugate vaccine is of importance beacuse while some polysaccharides contain chemical grouping which can be conveniently utilized for conjugation, many medically important ones require derivatization before they can be coupled to protein. Derivatization of which can be achieved through various strategies, important to note is through hypervalent iodine oxidants. Two hypervalent iodine reagents, O-Methyl substituted-1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide (Me-IBX)and modified 1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide (mIBX)were successfully synthesized in preparation for the use in polysaccharide, polyribitol phosphate, (PRP) oxidation. The polysaccharide to be oxidised was first size reduced by microfluidisation to allow maximum oxidation. However, the extent to which oxidisation was achieved was not enough to conjugate the polysaccharide to the protein of preference, Bovine Serum Albumin, (BSA).

Page generated in 0.0603 seconds