• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Serviço local de periodograma em GPU para detecção de trânsitos planetários

Basile, Antonio Luiz 13 June 2017 (has links)
Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-02-26T20:16:03Z No. of bitstreams: 2 Antonio Luiz Basile.pdf: 17687865 bytes, checksum: 2a522597431038d77d0589adb79c778c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-03-08T11:22:02Z (GMT) No. of bitstreams: 2 Antonio Luiz Basile.pdf: 17687865 bytes, checksum: 2a522597431038d77d0589adb79c778c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-03-08T11:22:02Z (GMT). No. of bitstreams: 2 Antonio Luiz Basile.pdf: 17687865 bytes, checksum: 2a522597431038d77d0589adb79c778c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-06-13 / Understanding other stellar systems is crucial to a better knowledge of the Solar System, as is the study of extrasolar planets orbiting the habitable zone of their host star central to the understanding of the conditions that allowed life to develop on our own planet. Presently there are thousands of confirmed planets, mostly detected by the Kepler satellite as they eclipse their host star. This overload of data urges an automatic data search for planetary transit detection within the stellar light curves. Box-Fitting Least Squares (BLS) is a good candidate for this task due to the intrinsic shape of the transiting light curve. Further improvement is obtained by parallelization of the BLS according to the number of bins. Both the sequential and parallel algorithms were applied to six chosen Kepler planetary systems (Kepler-7, Kepler-418, Kepler-439, Kepler-511, Kepler-807, Kepler-943) and to different light curve lengths. In all cases, speedup increased from 3 to 45 times as the number of bins increased, because the performance of the sequential version degrades with an increase in the number of bins, while remaining mainly constant for the parallel version. For smaller planets with longer orbital periods, a large number of bins is necessary to obtain the correct period detection. / A compreensão de outros sistemas estelares é crucial para um melhor conhecimento do Sistema Solar, assim como o estudo de planetas extrasolares orbitando a zona habitável de sua estrela hospedeira é central para a compreensão das condições que permitiram a vida desenvolver-se em nosso próprio planeta. Atualmente existem milhares de planetas confirmados, detectados principalmente pelo satélite Kepler, que eclipsam sua estrela hospedeira. Esta sobrecarga de dados requer uma busca automática de dados para detecção de trânsito planetário dentro das curvas de luz estelares. O algoritmo Box-Fitting Least Squares (BLS) é um bom candidato para esta tarefa devido à forma intrínseca da curva de luz em trânsito. Melhoria adicional é obtida por paralelização do BLS de acordo com o número de bins. Ambos os algoritmos, sequencial e paralelo, foram aplicados a seis sistemas planetários Kepler (Kepler-7, Kepler-418, Kepler-439, Kepler-511, Kepler-807, Kepler-943) e a curvas de luz de comprimentos distintos. Em todos os casos, o speedup aumentou, entre 3 e 45 vezes, à medida que o número de bins aumentou, pois o desempenho da versão sequencial degradou com o aumento no número de bins, permanecendo praticamente constante para a versão paralela. Para planetas menores com períodos orbitais mais longos, um grande número de bins é necessário para obter a detecção de período correto.
2

Probabilistic Multi-Modal Data Fusion and Precision Coordination for Autonomous Mobile Systems Navigation : A Predictive and Collaborative Approach to Visual-Inertial Odometry in Distributed Sensor Networks using Edge Nodes / Sannolikhetsbaserad fermodig datafusion och precision samordning för spårning av autonoma mobila system : En prediktiv och kant-samarbetande metod för visuell-inertial navigation i distribuerade sensornätverk

Luppi, Isabella January 2023 (has links)
This research proposes a novel approach for improving autonomous mobile system navigation in dynamic and potentially occluded environments. The research introduces a tracking framework that combines data from stationary sensing units and on-board sensors, addressing challenges of computational efficiency, reliability, and scalability. The work innovates by integrating spatially-distributed LiDAR and RGB-D Camera sensors, with the optional inclusion of on-board IMU-based dead-reckoning, forming a robust and efficient coordination framework for autonomous systems. Two key developments are achieved. Firstly, a point cloud object detection technique, "Generalized L-Shape Fitting”, is advanced, enhancing bounding box fitting over point cloud data. Secondly, a new estimation framework, the Distributed Edge Node Switching Filter (DENS-F), is established. The DENS-F optimizes resource utilization and coordination, while minimizing reliance on on-board computation. Furthermore, it incorporates a short-term predictive feature, thanks to the Adaptive-Constant Acceleration motion model, which utilizes behaviour-based control inputs. The findings indicate that the DENS-F substantially improves accuracy and computational efficiency compared to the Kalman Consensus Filter (KCF), particularly when additional inertial data is provided by the vehicle. The type of sensor deployed and the consistency of the vehicle's path are also found to significantly influence the system's performance. The research opens new viewpoints for enhancing autonomous vehicle tracking, highlighting opportunities for future exploration in prediction models, sensor selection, and precision coordination. / Denna forskning föreslår en ny metod för att förbättra autonom mobil systemsnavigering i dynamiska och potentiellt skymda miljöer. Forskningen introducerar ett spårningsramverk som kombinerar data från stationära sensorenheter och ombordssensorer, vilket hanterar utmaningar med beräkningsefektivitet, tillförlitlighet och skalbarhet. Arbetet innoverar genom att integrera spatialt distribuerade LiDAR- och RGB-D-kamerasensorer, med det valfria tillägget av ombord IMU-baserad dödräkning, vilket skapar ett robust och efektivt samordningsramverk för autonoma system. Två nyckelutvecklingar uppnås. För det första avanceras en punktmolnsobjektdetekteringsteknik, “Generaliserad L-formig anpassning”, vilket förbättrar anpassning av inneslutande rutor över punktmolnsdata. För det andra upprättas ett nytt uppskattningssystem, det distribuerade kantnodväxlingsfltret (DENSF). DENS-F optimerar resursanvändning och samordning, samtidigt som det minimerar beroendet av ombordberäkning. Vidare införlivar det en kortsiktig prediktiv funktion, tack vare den adaptiva konstanta accelerationsrörelsemodellen, som använder beteendebaserade styrentréer. Resultaten visar att DENS-F väsentligt förbättrar noggrannhet och beräknings-efektivitet jämfört med Kalman Consensus Filter (KCF), särskilt när ytterligare tröghetsdata tillhandahålls av fordonet. Den typ av sensor som används och fordonets färdvägs konsekvens påverkar också systemets prestanda avsevärt. Forskningen öppnar nya synvinklar för att förbättra spårning av autonoma fordon, och lyfter fram möjligheter för framtida utforskning inom förutsägelsemodeller, sensorval och precisionskoordinering. / Questa ricerca propone un nuovo approccio per migliorare la navigazione dei sistemi mobili autonomi in ambienti dinamici e potenzialmente ostruiti. La ricerca introduce un sistema di tracciamento che combina dati da unità di rilevazione stazionarie e sensori di bordo, afrontando le sfde dell’effcienza computazionale, dell’affdabilità e della scalabilità. Il lavoro innova integrando sensori LiDAR e telecamere RGB-D distribuiti nello spazio, con l’inclusione opzionale di una navigazione inerziale basata su IMU di bordo, formando un robusto ed effciente quadro di coordinamento per i sistemi autonomi. Vengono raggiunti due sviluppi chiave. In primo luogo, viene perfezionata una tecnica di rilevazione di oggetti a nuvola di punti, “Generalized L-Shape Fitting”, migliorando l’adattamento del riquadro di delimitazione sui dati della nuvola di punti. In secondo luogo, viene istituito un nuovo framework di stima, il Distributed Edge Node Switching Filter (DENS-F). Il DENS-F ottimizza l’utilizzo delle risorse e il coordinamento, riducendo al minimo la dipendenza dal calcolo di bordo. Inoltre, incorpora una caratteristica di previsione a breve termine, grazie al modello di movimento Adaptive-Constant Acceleration, che utilizza input di controllo basati sul comportamento del veicolo. I risultati indicano che il DENS-F migliora notevolmente l’accuratezza e l’effcienza computazionale rispetto al Kalman Consensus Filter (KCF), in particolare quando il veicolo fornisce dati inerziali aggiuntivi. Si scopre anche che il tipo di sensore impiegato e la coerenza del percorso del veicolo infuenzano signifcativamente le prestazioni del sistema. La ricerca apre nuovi punti di vista per migliorare il tracciamento dei veicoli autonomi, evidenziando opportunità per future esplorazioni nei modelli di previsione, nella selezione dei sensori e nel coordinamento di precisione.

Page generated in 0.0877 seconds