• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 8
  • Tagged with
  • 19
  • 14
  • 13
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Framtidens användning av reservelverk inom eldistribution : En fallstudie på E.ON Energidistribution / The Future Use of Mobile Emergency Generators in Electricity Distribution : A Case Study at E.ON Energidistribution

Lauschke, Gino, Olsson, Isabelle January 2023 (has links)
Sweden has ambitious climate targets to achieve net zero emissions by 2045. One of the possiblesolutions to achieve this goal is electrification, and electricity use is expected to increase from today's 140 TWh to 170-282 TWh, according to the Swedish Energy Agency's different scenarios. This means that society will become increasingly dependent on electricity, which may also bring problems. For example, society risks being severely affected by disturbances in the power grid, and the cost of power outages will increase. To avoid the consequences of power outages, electricity distribution companies have mobile emergency generators that can be deployed where a power outage has occurred. Thegenerators are often diesel generators using fossil diesel. There are several challenges associated with the use of mobile emergency generators during outages, as they need to be quickly transported to the site of the outage, fuel needs to be available, and they need to be tested regularly to operate correctly. This study has investigated the future use of mobile emergency generators from an electricity distribution company’s perspective. This has been done by examining how the future need for mobile emergency generators in electricity distribution can be expected to change in the future, the technological development of diesel-powered generators, and what fossil-free alternatives are adequate in the short and long term. In addition, the advantages and disadvantages of owning, renting and co-owning mobile emergency generators have been studied. The report is primarily aimed at stakeholders who are directly or indirectly involved in the work with mobile emergency generators. The study consists of a case study in which the electricity distribution company E.ON Energidistribution is studied. In addition, a literature review, simple calculations and 10 interviews were conducted with electricity distribution companies, rental companies, manufacturers and public agencies. The results show that the need for mobile emergency generators can be expected to increase slightly in the short term due to instability in the world and the electricity system. Undergrounding has led to fewer power outages and shorter outage times for customers, and there is also a trend towards using mobile emergency generators more for planned outages than unplanned ones. The need for back-up power will most likely never disappear completely, but it is considered reasonable to assume that it will decrease slightly as the power grid improves. Furthermore, the results show that diesel generatorshave evolved significantly in terms of fuel consumption and emissions, as a result of increasingly stringent EU emission requirements, and currently there are no fossil-free alternatives that can compete with diesel generators if only economic factors are taken into account. On the other hand, biofuels such as HVO are believed to play a major role in reducing emissions as it can be used in today's mobile emergency generators without modifications. In the long term, batteries and fuel cells could be a viable option. Batteries are not yet an option as they are too heavy and cannot store enough energy. Fuel cells are believed to have more potential than batteries to replace diesel generators in the future but need further development. Finally, results show advantages and disadvantages of electricity distribution companies owning their mobile power generators, renting generators when needed, and sharing generators between electricity distribution companies. Distribution companies and public agencies see great security in owning the generators themselves, while renters point out that renting the generators has advantages related to their functionality. Sharing generators was by the electricity distribution companies seen as too complicated. In conclusion, this study provides a broad insight into the role and development of mobile emergency generators in electricity distribution and may serve as a basis for further research in this area. Some examples of future research suggested are further investigation of fuel supply and logistics, sustainability of ownership structure and different technologies, and further investigation of rentingmobile emergency generators. / Sverige har satt upp höga klimatmål där man ska nå nettonollutsläpp senast år 2045. En av lösningarna för att uppnå målet är att elektrifiera många delar av samhället, och elanvändningen förväntas enligt Energimyndighetens scenarier öka från dagens 140 TWh till 170–282 TWh beroende på scenario. Det innebär att samhället skapar ett allt större beroende av el, vilket också kan föra med sig problem. Det gör till exempel att samhället drabbas hårt vid olika störningar i elnätet, och att kostnaden för elavbrott blir allt högre. För att undvika konsekvenserna av elavbrott har elnätsföretag mobila reservelverk som kan köras ut till en del av elnätet där ett avbrott har uppstått. Reservelverken är ofta en dieselgenerator som använder fossil diesel. Det finns flera utmaningar kopplade till reservelverkens användning vid avbrott, då de snabbt behöver kunna transporteras till platsen där avbrottet är, det behöver finnas tillgång på bränsle och de måste testköras och underhållas regelbundet för att fungera när de behövs. Denna studie har undersökt hur ett större elnätsföretag i Sverige bör förhålla sig till reservelverk på kort sikt (inom 10 år) och på längre sikt (över 10 år). Det har gjorts genom att undersöka hur det framtida behovet av reservelverk inom eldistribution kan förväntas förändras på lång och kort sikt, hur teknikutvecklingen för dieseldrivna reservelverk ser ut och vilka lämpliga fossilfria alternativ som finns på kort och lång sikt. Dessutom har olika ägandeförhållanden undersökts, och fördelar och nackdelar med att äga, hyra och samäga reservelverk har studerats. Rapporten riktar sig framförallt till intressenter inom eldistributionssektorn som direkt eller indirekt arbetar med reservelverk. Studien består av en fallstudie där elnätsföretaget E.ON Energidistribution studeras, och fallstudieföretaget är även uppdragsgivare till detta examensarbete. Utöver fallstudien genomfördes en litteraturstudie, enklare beräkningar och 10 intervjuer med elnätsföretag, uthyrare, tillverkare av reservelverk, tillverkare av fossilfria alternativ och myndigheter. Resultaten visar att behovet av reservelverk kan förväntas öka svagt på kort sikt på grund av osäkerheter i världen och effektbrist i elsystemet. Vädersäkring har lett till färre elavbrott och kortare avbrottstider för elnätföretagens kunder, och det finns även en trend mot att reservelverken används mer för planerade avbrott än oplanerade avbrott. Behovet av reservkraft kommer med största sannolikhet aldrig helt att försvinna, men det anses rimligt att anta att det kommer minska svagt i takt med att elnätet förbättras. Vidare visar resultaten att dieseldrivna reservelverk har utvecklats mycket när det kommer till bränsleförbrukning och emissioner till följd av EU:s allt hårdare emissionskrav, och i dagsläget finns det inga fossilfria alternativ som kan konkurrera med dieselgeneratorer om endast hänsyn tas till ekonomiska faktorer. Däremot tros biobränslen som HVO kunna spela en stor roll i att minska klimatutsläppen då det kan användas i dagens reservelverk utan modifikationer. På längre sikt skulle batterier och bränsleceller kunna vara alternativ, men då batterier är mycket tunga och i dagsläget inte kan lagra tillräckligt mycket energi är det ännu inget alternativ. Bränsleceller tros ha större potential än batterier att ersätta dieseldrivna reservelverk, men utvecklingen ligger i dagsläget efter utvecklingen för batterier. Slutligen visar resultat på för- och nackdelar med att elnätsföretaget äger sina reservelverk själva, att de hyr in reservelverk vid behov, och med att samäga reservelverk mellan elnätsföretag. Elnätsföretagen och myndigheter ser stor trygghet i att äga verken själv medan uthyrare pekade på att inhyrning av reservelverken har fördelar kopplat till reservelverkens funktionalitet. Att samäga reservelverk sågs av elnätsföretagen som för komplicerat. Avslutningsvis ger denna studie en bred inblick i de mobila reservelverkens roll och utveckling inom eldistribution, och kan ligga till grund för fortsatt forskning inom området. Några exempel på framtida forskning som föreslås är att vidare undersöka tillgång och logistik på bränsle, hållbarhetsaspekter kring ägandeförhållanden och olika tekniker samt fördjupning kring inhyrning av reservelverk.
2

Gatubelysning i bebyggelse utan fast elnät i Ghana : Kan en anläggning för gatubelysning drivas av solceller med bränsleceller som ackumulator, i ett slutet system? / Off grid Street Lighting in Ghana : Could a Facility for Street Lights be powered by Solar Cells with Fuel Cell as an accumulator, in a closed system?

Mårtensson, Pär January 2013 (has links)
Abstract There are rural areas in Ghana which are off-grid but where there is a need for street lighting. Street lighting facilities in such areas typically store electrical power in lead-acid batteries. The goal of this thesis is to construct a facility where fuel cells and hydrogen accumulation replace lead-acid batteries. The construction consists of a solar cell which transmits DC power to an electrolyzer which in turn produces hydrogen and oxygen. The gases accumulate in the container until nightfall when it starts providing DC power to street lighting via a fuel cell. The street lights can operate between 5 - 10 hours per day, depending on the power of the lamp. Besides providing street lighting the device may also be used for other purposes such as indoor lighting, charging of mobile phones etc. This means that, in addition to the basic purpose of providing electrical power to the street lights, other co-benefits of social significance can be achieved. The device is designed not to create any harmful emissions during operation, thus being environmentally sustainable. Further research on the device may in a second step entail: Construction of a prototype on a smaller scale, where calculations and function are tested. If it turns out well, a third step can begin: To build a full scale plant to be tested on site in Ghana.
3

Möjligheter för vätgas till sjöss : En introduktion för vätgas och bränslecellen till sjöfarten / Opportunities for hydrogen at sea

Kihlberg, William January 2020 (has links)
Detta arbete handlar om vätgasens implementation inom den marina sektorn, med hänsyn till bland annat riskfaktorer, egenskaper hos ämnet samt ekonomiska utmaningar. Syftet med detta arbete var att skapa en lättöversiktlig bild över hur pass lämplig användandet av vätgas skulle vara inom dagens sjöfart. Då vätgasen ännu inte har testats inom någon stor utsträckning till sjöss så kan de flesta rapporter man hittar om vätgas endast redovisa hur ett användande borde se ut och inte hur det faktiskt ska vara. På grund av detta så har det visats sig att detta metodval att ta relevant information från en större mängd olika källor varit rätt väg att gå. Efter att ha studerat vätgasen från flera aspekter så kan man konstatera att det inte skulle vara någon omöjlighet att driva större fartyg på vätgas, men att detta skulle kräva stora satsningar från länder och rederier för att göra det en verklighet. / This work deals with the implementation of hydrogen in the marine sector, considering risk assessments, properties of the substance and economic challenges. The aim of this work was to create a simple overview of how suitable the use of hydrogen would be in today's shipping. Since hydrogen has not yet been tested to a large extent at sea, most reports found about hydrogen can only account for what a usage should look like and not what it actually should be. Because of this, it has been shown that the method of taking relevant information from a wider variety of sources has proved to be the way to go. Having studied hydrogen from several aspects, it can be concluded that it would not be impossible to drive larger ships on hydrogen, but that this would require major efforts from countries and shipping companies to make it possible.
4

Jämförande studie av självförsörjningsgraden för flerbostadshus : Tillvaratagande av solelöverskott genom vätgaslagring

Svensson, Ella, Gustafsson, Agnes January 2023 (has links)
År 2045 är det långsiktiga målet för Sverige att inte ha några nettoutsläpp av växthusgaser. För att nå nettonollutsläpp görs satsningar på förnybara energikällor som vind- och solenergi. Dessa energikällor har en ojämn energiproduktion och på grund av det ökar intresset för att lagra energin, vilket är möjligt med vätgas. Syftet med examensarbetet är att utreda möjligheterna för ett radhus, punkthus och lamellhus placerade i Gävle att bli självförsörjande med solceller och vätgaslager. Studien är baserad på datainsamling och simulering. Simuleringar utförs i programvarorna IDA ICE och Winsun PV för att ta fram byggnadernas energianvändning och solelproduktion. Simuleringar utförs även i Excel där en egen beräkningsmodell har skapats för vätgassystemet. Det som presenteras i rapportens metod är hur beräkningsmodellen har byggts upp och de grundekvationer som har använts. De frågeställningar som ställs och besvaras är: Hur påverkas självförsörjningsgraden av el och värme för flerbostadshus genom installation av solceller och vätgaslagring? Hur påverkar husens utformning självförsörjningsgraden? Hur påverkar solceller och vätgaslager husens utsläpp av växthusgaser? Husmodellerna som analyseras har olika förutsättningar och förses med olika storlekar på elektrolysör och vätgaslager samt ett varierat antal bränsleceller. Husmodellerna utgår alla ifrån ett tomt lager och simuleras för två år. När analysen är genomförd utses de mest lämpade husmodellerna med högst självförsörjningsgrad. Därefter görs en analys av hur stora besparingar av växthusgasutsläpp som kan göras vid inrättande av solcells- och vätgassystem. Resultatet visar att självförsörjningsgraden är som högst för radhuset och punkthuset. För dessa system är självförsörjningsgraden 93 % respektive 89%. Lamellhuset har lägst självförsörjningsgrad, 71 %. Slutsatsen är att antal hushåll att försörja samt de olika husmodellernas förutsättningar att installera solceller har en betydande inverkan på självförsörjningsgraden. Vid inrättandet av solcells- och vätgassystem minskar utsläppen av växthusgaser med 36– 44 %. Följande visar på att inrättande av hållbara energisystem är en förutsättning för omställningen till förnybara energisystem och därmed nå klimatmålen. / In 2045, the long-term goal for Sweden is to have no net emissions of greenhouse gas. To reach net zero emissions, investments are made in renewable energy sources such as wind and solar energy. These energy sources have an uneven energy production, due to this there is an increase in interest for storing energy in the form of hydrogen. The aim of the thesis is to investigate the possibilities for a terraced house, tower block and low-rise apartment building located in Gävle to become self-sufficient with solar power and hydrogen storage. The study is based on data collection and simulation. The software IDA ICE and Winsun PV were used to simulate the buildings electricity needs and solar production. In Excel, a separate calculation model has been created for the hydrogen system. The method of the report presents how the calculation model has been constructed from the basic equations used. The question statements are: How is the degree of self-sufficiency of electricity and heat for apartment buildings affected by the installation of solar cells and hydrogen storage? How does the design of the houses affect the degree of self-sufficiency? How do solar cells and hydrogen storage affect greenhouse gas emissions? The house models analyzed have different prerequisites and are equipped with different sizes of electrolyser, fuels cells and hydrogen storage. The house models are all based on an empty storage and simulated for two years. Once the analysis is completed, the most suitable house model with the highest self-sufficiency rate is selected. This is followed by an analysis of how much greenhouse gas emissions can be saved by installing a solar and hydrogen system. The results shows that the self-sufficiency is highest for the terraced house and tower block. For these systems, the degree of self-sufficiency is 93% and 83%. The low-rise building has the lowest degree of self-sufficiency, 71%. The conclusion is that the number of households to support and the various house models’ conditions for installing solar cells have a significant impact on the degree of self-sufficiency. When using solar cells with hydrogen storage, greenhouse gas emissions are reduced by 36-44%. This shows that the establishment of sustainable energy systems is the prerequisite for the transition to renewable energy systems in order to reach the climate goals.
5

Bränsleceller i taktisk enhet / Fuel cells in military units

Ohlson, Jan January 2010 (has links)
Inom Försvarsmakten används motordrivna generatorer för att förse många förbandsenheter med elektricitet. Dagens bullriga och vibrerande elverk är idag möjliga att ersätta med tystare bränsleceller. På köpet erhålls en bättre ergonomi för alla som arbetar i hytter som strömförsörjs av elverk. I rapporten redovisas funktionen för olika typer av bränsleceller, vilka bränslen de använder sig av och hur dessa kan transporteras. Dessutom redovisas hur två elverk används och vilka förbättringar som kan åstadkommas vid byte till bränsleceller. Slutligen analyseras den militära nyttan med ett byte. / In the Armed Forces many units are provided with electricity from generators. It is now possible to replace noisy and vibrating generators used today with more quiet fuel cells. As a bonus, we obtain better ergonomics for those working in units powered by generators. This report describes the function of different types of fuel cells, what fuels they use and how they can be transported. Furthermore it shows how two generators are used and what improvements can be achieved when switching to fuel cells. Finally the military benefit of retrofitting is analyzed.
6

Evaluation of real drive data of a refuse fuel cell truck / Utvärdering av verkliga kördata för en sopbil med bränslecell

Eurén, Hampus January 2023 (has links)
Ett konsortium bestående av Scania, JOAB, Powercell, KTH och Renova samarbetade för att designa och konstruera en bränslecellsdriven sopbil inom ett FFI-finansierade projekt. Sopbilen har sedan dess varit i drift i Göteborg från 2020 till 2023, med en vätgasinfrastruktur bestående av en tankstation vid tidpunkten för detta arbete. Under den tiden har bränslecellen genomgått kör- och stillastående tester. Verkliga kördata på sopbilens system och bränslecell registrerades. Databaserna var osynkroniserade i tid och därför krävdes datasynkronisering. Detta examensarbete inleddes med huvudsyftet att utveckla ett accelererat åldringstest för bränslecellen baserat på denna applikation. Ett ytterligare syfte var att utvärdera bränslecellens åldrande. På grund av de tillgängliga variablerna baserades bränslecellens åldrande på försämring av elektrisk effekt vid konstanta temperaturer och strömmar. En testcykel (eller effekt-cykel) baserad på testkörningen av sopbilen utvecklades istället. Genom att använda den etablerade metoden "k-means clustering" på bränslecellens effekt-cykler skapades en testcykel som var representativ för sopbils-körning från 2020 till 2023. Testcykeln validerades baserat på ett statistiskt kriterium, verifiering och ytterligare arbete krävs dock. Efter 141,80 timmars bränslecellsdrift kunde ingen åldring identifieras. Mer data från sopbilen behövs och faktumet att ytterligare en vätgastankstation kommer att installeras under 2023 i Göteborg innebär att sopbilens körmönster kan förändras. Resultaten från denna avhandling lägger dock grunden för framtida forskning och erbjuder ett tillvägagångssätt för att studera den bränslecellsdrivna sopbilen. / A consortium consisting of Scania, JOAB, Powercell Sweden AB, KTH, and Renova collaborated to design and engineer a fuel cell-powered refuse truck within a FFI-funded project. The refuse truck has been operational in Gothenburg since 2020, with a hydrogen gas infrastructure of one refuelling station at the time of this work. From 2020 to 2023, the fuel cell has gone through driving and standing still tests. Real drive data on the truck's system and fuel cell was recorded. The databases were unsynchronised in time, hence data synchronisation was required.  This thesis began with the main aim of developing an accelerated stress test for the fuel cell based on this application. Additionally, the aim was to evaluate the ageing of the fuel cell. Due to the available variables, fuel cell ageing was based on deterioration of fuel cell powers at constant temperatures and currents.  A test cycle (or power cycle) based on refuse truck test driving was developed instead. By utilising the established “k-means clustering” method on fuel cell power cycles, a test cycle representative of the truck operation from 2020 to 2023 was made. The test cycle was validated based on a statistical criterion, although verification and further work are required. After 141.80 hours of fuel cell power requests no ageing could be identified. More data from refuse truck operation is needed, also considering that an additional hydrogen refuelling station will be put in place in 2023 in Gothenburg, hence the drive pattern might vary. In this context, however, the results from this thesis lay the foundation for future research and offer an approach to study the fuel cell truck.
7

System studies of MCFC power plants

Fillman, Benny January 2005 (has links)
<p>Die Brennstoffzelle ist ein elektrochemischer Reaktor und wandelt chemisch gebundene Energie direkt in elektrische Energie um. In der stationären Energieerzeugung ist der Brennstoffzellenstapel selbst nur ein kleiner Bestandteil des vollständigen Systems. Die Integration aller zusätzlichen Bestandteile, der Peripheriegeräte (Balance-of-Plant) (BoP), ist eine der Hauptaufgaben in der Studie der Brennstoffzellenkraftwerke.</p><p>Diese Untersuchung betrifft die Systemstudie des auf der Schmelz-Karbonat-Brennstoffzelle (MCFC) basierten Kraftwerks. Die Systemstudie ist mit dem Simulationprogramm Aspen PlusTM durchgeführt worden.</p><p>Artikel I beschreibt die Implementierung eines in Aspen PlusTM entwickelten MCFC Stapelmodells, um ein MCFC Kraftwerk zu studieren, das Erdgas als Brennstoff verwendet.</p><p>Artikel II beschreibt, wie unterschiedliche Prozeßparameter, wie Brenngasnutzung und dieWahl des Brennstoffes, die Leistung eines MCFC Kraftwerks </p> / <p>A fuel cell is an electrochemical reactor, directly converting chemically bound energy to electrical energy. In stationary power production the fuel cell stack itself is only a small component of the whole system. The integration of all the auxiliary components, the Balance-of-Plant (BoP), is one of the main issues in the study of fuel cell power plants.</p><p>This thesis concerns the systems studies of molten carbonate fuel cell (MCFC) based power plants. The system studies has been performed with the simulation software Aspen PlusTM.</p><p>Paper I describes on the implementation of a developed MCFC stack model into Aspen PlusTM in order to study an MCFC power plant fueled with natural gas.</p><p>Paper II describes how different process parameters, such as fuel cell fuel utilization, influence the performance of an MCFC power plant.</p> / <p>Bränslecellen är en elektrokemisk reaktor som kan direkt omvandla kemiskt bunden energi till elektrisk energi. I stationär kraftproduktion är själva bränslecellsstapeln endast en mindre komponent i systemet. Integrationen av kringutrustningen, den s.k. Balance-of-Plant (BoP), som tex. pumpar, kompressorer och värmeväxlare är en av huvudfrågeställningarna i studierna av bränslecellskraftverk. Denna avhandling avser systemstudier av mältkarbonatbränslecellsbaserade (MCFC) kraftverk. Systemstudierna har utförts med processimuleringprogramet Aspen PlusTM.</p><p>Artikel I beskriver en utvecklad MCFC-cellmodell, som implementeras som "user model" i Aspen Plus, för att studera ett naturgasbaserat bränslecellskraftverk.</p><p>Artikel II beskriver hur olika processparametrar, som tex bränsleutnyttjande och val av bränsle, påverkar ett MCFC-kraftverks prestanda.</p>
8

Ersätta APU:n med SOFC-GT Hybridsystem inom luftfarten

Sarwari, Javid, Heidari, Abbas January 2018 (has links)
The current Auxiliary Power Unit (APU) contributes a lot to the greenhouse effect in terms of emissions, and in the form of noise and also is very heavy. The need for more electricity has increased in aircrafts and therefore major aircraft suppliers like Boeing and Airbus want to switch to more electric aircraft (MEA) which is lighter and has less environmental impacts. The purpose of this work is to investigate the possibilities of replacing today's traditional APU with fuel cells. In this work presents six different common fuel cell types which used commercially in various areas in the market. We have also analyzed and investigated the most suitable fuel cell types and have chosen to apply the SOFC-GT Hybrid Systems. We have investigated and compared both systems with pros and cons. We have used different methods in this work including the FOI3-method and Safran &amp; Honeywell for calculations of emissions for all systems. Finally, we have analyzed and investigated the emissions, noise and weight for both systems. / Nuvarande Auxiliary Power Unit (APU) bidrar mycket negativt till växthuseffekten i form av emissionsutsläpp och även i form av buller och är dessutom mycket tunga. Behovet av mer elektricitet ökar i flygplan och därför vill stora flygplanstillverkare såsom Boeing och Airbus övergå till more electric aircraft (MEA) vilket är lättare och har mindre miljöpåverkan. Syftet med detta arbete är att undersöka möjligheterna av att ersätta dagens traditionella APU mot bränsleceller. I detta arbete presenteras sex olika bränslecellstyper som finns på marknaden och används kommersiellt inom olika områden. Vi har analyserat och undersökt de lämpligaste bränslecellstyper för applicering och därefter har vi valt att implementera SOFC- GT Hybridsystemen. Vi har undersökt och jämfört båda systemens för- och nackdelar. Metodmässigt används bland annat FOI3-Metoden och Safran &amp; Honeywell för beräkningar av utsläpp av emissioner för samtliga system. Slutligen har vi analyserat och undersökt skillnader i utsläpp av emissioner, buller och vikt för båda systemen.
9

Materials Reliability in PEM Fuel Cells

Mølmen, Live January 2021 (has links)
As part of the global work towards reducing CO2 emissions, all vehicles needs to be electrified, or fueled by green fuels. Batteries have already revolutionised the car market, but fuel cells are believed to be a key energy conversion system to be able to electrify also heavy duty vehicles. The type of fuel cell commercially available for vehicles today is the polymer electrolyte membrane fuel cell (PEMFC), but for it to be able to take a larger market share, the cost must be reduced while sufficient lifetime is ensured. The PEMFC is a system containing several components, made of different materials including the polymer membrane, noble metal catalyst particles, and metallic bipolar plate. The combination of different materials exposed to elevated temperature, high humidity and low pH make the PEMFC components susceptible to corrosion and degradation. The noble metal catalyst is one of the major contributors to the high cost. In this work, the latest research on new catalyst materials for PEMFCs are overviewed. Furthermore, electrodeposition as a simple synthesis route to test different Pt-alloys for the cathode catalyst in the fuel cell is explored by synthesis of PtNi and PtNiMo. The gas diffusion layer of the PEMFC is used as substrate to reduce the number of steps to form the membrane electrode assembly. In addition to cheaper and more durable materials, understanding of how the materials degrade, and how the degradation affects the other components is crucial to ensure a long lifetime. Finding reliable test methods to validate the lifetime of the final system is necessary to make fuel cell a trusted technology for vehicles, with predictable performance. In this work, commercial flow plates are studied, to see the effect of different load cycles and relative humidities on the corrosion of the plate. Defects originating from production is observed, and the effect of these defects on the corrosion is further analysed. Suggestions are given on how the design and production of bipolar plates should be made to reduce the risk of corrosion in the PEMFC. / Som en del av det globala arbetet med at reducera utsläppen av koldioxid måste alla fordon elektrifieras eller tankas med förnybart bränsle. Batterier har redan revolutionerat bilmarknaden, men bränsleceller är en viktig pusselbit för att också elektrifiera tunga fordon. Den typen av bränsleceller för fordon som finns tillgänglig på den kommersiella marknaden i dag är polymerelektrolytbränslecellen (PEMFC). För att PEMFC skall ta en större marknadsandel måste kostnaderna minskas och livslängden förlängas. PEMFC består av ett antal komponenter gjorda av olika material, bland annat polymer membran, ädelmetallkatalysator, och metalliska bipolära plattor. Kombinationen av olika material i tillägg till den höga temperaturen, hög fuktighet och låg pH gör att materialen i bränslecellen är utsatta för korrosion. Ädelmetallkatalysatorn är en av de kostdrivande komponenterna i bränslecellen. I denna studien presenteras en översikt över framstegen inom katalysatormaterial för PEM bränsleceller de senaste två åren. Sedan studeras elektroplätering som en enkel produktionsmetod för nanopartiklar av platina legeringar. Möjligheten att simultant plätera fler metaller, och att använda gasdiffutions-skiktet från bränslecellen som substrat för att reducera antal produktionsteg och därmed reducera kostnader, undersöks. Det möjliggör också snabb testning av olika legeringar för att identifiera den optimala sammansättningen med hög prestanda, lång livslängd och lite platina. I tillägg till att ta fram billigare och tåliga material är det viktigt att förstå hur materialen degraderar och hur degraderingen av ett material påverkar de andra komponenterna. Med den kunskapen kan man utveckla accelererade testmetoder för att bedöma livslängden av hela bränslecellen. Validerade testmetoder är viktigt för att styrka förtroendet till nya teknologier. I denna studien fokuseras det också på korrosion av bipolära plattor, och hur olika lastcykler och fuktnivåer som kan bli applicerad vid accelererad testning påverkar korrosionen. Också effekten av defekter från tillverkningen i den skyddande beläggningen analyseras med hänsyn till korrosion, för att ge mer insikt i hur bipolära plattor kan designas och produceras för att minska korrosionen.
10

Hydrogen Fuel Cell Lifetime Simulation in Marine Applications

Zhong, Yifeng January 2022 (has links)
Maritime transportation emits about 3% of global greenhouse gas, International Maritime Organization (IMO) aims to reduce shipping’s emissions by 50% with respect to 2008 levels. Proton exchange membrane fuel cells (PEMFCs) are considered among the most promising clean technologies for decarbonizing the maritime sector. One of the challenges for commercial application of PEMFCs is their limited durability. The purpose of this thesis was to assess the most significant degradation mechanisms and operating conditions of the PEMFC in marine applications, including membrane and catalyst layer degradation during idle, start-stop cycles, and dynamic load cycles, and to build a model to forecast the lifetime.A semi-empirical approach was developed to evaluate the PEMFC lifetime through a 2D COMSOL model. The model takes into account the empirical relationships for membrane conductivity loss and electrochemical surface area (ECSA) decay as functions of cycling numbers, aging process, and idling time. The 2D model has been validated with the experimental data in the literature and are also compared with a previous 1D model. The polarization curves show the voltage output against current density, lifetime is evaluated using a 10% voltage reduction criterion at the current density 0.6 A/cm2.An improved ECSA degradation model with variable load levels increases the lifetime of the ferry in Case 5 from 5500 hours to 7500 hours. Load cycling and idling cause the most severe degradation, but the impact can be reduced by a hybrid system with battery supplement and onshore charging. The lifetime of the ferry in Case 5 has been significantly further improved from 7500 hours to 22500 hours, which is comparable to the 20000-hour lifetime of commercial products for marine applications. Furthermore, membrane thickness effect analysis showed that fuel cells with thinner membranes (such as NR211) have better performance before degradation due to higher proton conductivity, but degrade faster during load cycling due to hydrogen crossover. The results of this research can be extended to help optimize fuel cell, stack and power system designs to avoid worst-case operating conditions and thereby limit fuel cell degradation. / Sjötransporter släpper ut cirka 3% av de globala växthusgaserna, International Maritime Organization (IMO) har som mål att minska sjöfartens utsläpp med 50 % jämfört med 2008 års nivåer. PEM-bränsleceller anses vara bland de mest lovande rena teknikerna för att minska koldioxidutsläppen i den maritima sektorn. En av utmaningarna för kommersiell användning av PEM-bränsleceller är deras begränsade hållbarhet. Syftet med denna avhandling var att bedöma de viktigaste nedbrytningsmekanismerna och driftsförhållandena för PEM-bränsleceller i marina applikationer, inklusive nedbrytning av membran och katalysatorskikt under tomgång, start-stopp-cykler och dynamiska belastningscykler, och att bygga en modell för att förutsäga livslängd.En semi-empirisk metod utvecklades för att utvärdera PEMFC:s livslängd genom en 2D COMSOL-modell. Modellen tar hänsyn till de empiriska sambanden för membrankonduktivitetsförlust och den elektrokemisk ytareans (ECSA) sönderfall som funktioner av cyklingstal, åldrandeprocess och tomgångstid. 2D-modellen har validerats med experimentella data i litteraturen och jämförs även med en tidigare 1D-modell. Polarisationskurvorna visar utspänningen mot strömtätheten, livslängden utvärderas med ett 10 % spänningsreduktionskriterium vid strömtätheten 0.6 A/cm2.En förbättrad modell för nedbrytning av elektrokemisk yta med varierande lastnivåer ökar färjans livslängd i fall 5 från 5500 timmar till 7500 timmar. Lastcykling och tomgång orsakar den allvarligaste försämringen, men påverkan kan minskas genom ett hybridsystem med batteritillägg och landladdning. Färjans livslängd i fall 5 har förbättrats avsevärt ytterligare från 7500 timmar till 22500 timmar, vilket är jämförbart med 20000 timmars livslängd för kommersiella produkter för marina applikationer. Vidare visade membrantjocklekseffektanalys att bränsleceller med tunnare membran (som NR211) har bättre prestanda före nedbrytning på grund av högre protonledningsförmåga, men bryts ned snabbare under belastningscykler på grund av väteövergång. Resultaten av denna forskning kan utökas för att hjälpa till att optimera designen av bränsleceller, stack och kraftsystem för att undvika värsta driftsförhållanden och därigenom begränsa nedbrytningen av bränsleceller.

Page generated in 0.0699 seconds