• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 26
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 146
  • 146
  • 44
  • 42
  • 40
  • 28
  • 24
  • 21
  • 19
  • 18
  • 18
  • 18
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Distortion correction for diffusion weighted magnetic resonance images

Stinson, Eric Gregory, January 1900 (has links)
Thesis (M.Sc.). / Written for the Medical Physics Unit. Title from title page of PDF (viewed 2009/09/07). Includes bibliographical references.
72

Classification of functional brain data for multimedia retrieval /

Cho, Hansang, January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 97-100).
73

Characterization and modulation of neural signals that support human memory

Mohan, Uma Rani January 2021 (has links)
Memory is critical to our everyday lives, allowing us to attach meaning to our experiences of the world. However, a number of neurocognitive disorders can result in the loss of this fundamental function. The development of effective treatments for loss of episodic memory depends on a detailed understanding of the neural signals that support memory and a thorough characterization of how brain stimulation may be targeted to modulate memory-related patterns of brain activity. In this dissertation, I approach these questions with a series of three studies to examine the effects of direct electrical brain stimulation, the role of large-scale patterns of brain activity in memory, and how stimulation can be used to modulate these signals. In my first study, I characterize changes in neuronal activity across the brain that resulted from delivering stimulation at a range of frequencies, amplitudes, and locations. To do this, I developed an analysis framework and applied it to a large-scale dataset of direct human brain recordings from electrodes implanted in neurosurgical epilepsy patients while intracranial stimulation was delivered. With these analyses, I found that stimulation most often had an inhibitory effect; however, high-frequency stimulation delivered near white-matter tracts was most likely to excite neuronal activity. In my second study, I investigated the functional role of brain oscillations that moved across the cortex during memory tasks. I found that traveling waves of low-frequency oscillations that moved anteriorly across the cortex most often supported successful memory encoding. Additionally, the timing, or phase, of brain oscillations propagating across specific areas of the cortex predicted efficient memory retrieval. In my last study, having determined that the direction of traveling waves is important for memory processes, I then investigated how different types of stimulation changed the direction of traveling waves of low-frequency oscillations. By analyzing intracranial recordings during a stimulation mapping procedure, I found that stimulation at high frequencies oriented in line with the direction of wave propagation was most effective in changing the propagation direction of traveling waves. Additionally, I tested how changes traveling wave direction from stimulation affected patients’ memory performance during an episodic memory task. For patients where stimulation changed the propagation direction of their waves from anterior to posterior directions, stimulation also impaired their memory, and when stimulation had the opposite effect on direction, it enhanced their memory. This provides the first preliminary causal evidence that stimulation can be targeted to modulate specific features of large-scale patterns of brain oscillations— the direction of traveling waves— and, in turn, affect memory performance. Broadly, this body of work shows that direct electrical stimulation of the brain applied with specific parameters holds the potential to modulate neural activity related to memory. This work expands our current understanding of the functional role of brain oscillations by showing that specific features of traveling waves across the cortex are key signals linked to human behavior. These findings provide both a basic understanding of how neural oscillations support human behavior as well as a foundation for designing stimulation protocols to precisely target desired changes in neural activity with the potential to improve diagnostic and therapeutic applications.
74

Machine Learning Methods for Fusion and Inference of Simultaneous EEG and fMRI

Tu, Tao January 2020 (has links)
Simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) have gained increasing popularity in studying human cognition due to their potential to map the brain dynamics with high spatial and temporal fidelity. Such detailed mapping of the brain is crucial for understanding the neural mechanisms by which humans make perceptual decisions. Despite recent advances in data acquisition and analysis of simultaneous EEG-fMRI, the lack of effective computational tools for optimal fusion of the two modalities remains a major challenge. The goal of this dissertation is to provide a recipe of machine learning methods for fusion of simultaneous EEG-fMRI data. Specifically, we investigate three types of fusion approaches and apply them to study the whole-brain spatiotemporal dynamics during a rapid object recognition task where subjects discriminate face, car, and house images under ambiguity. We first use an asymmetric fusion approach capitalizing on temporal single-trial EEG variability to identify early and late neural subsystems selective to categorical choice of faces versus nonfaces. We find that the degree of interaction in these networks accounts for a substantial fraction of our bias to see faces. Based on a computational modeling of behavioral measures, we further dissociate separate neural correlates of the face decision bias modulated by varying levels of stimulus evidence. Secondly, we develop a state-space model based symmetric fusion approach to integrate EEG and fMRI in a probabilistic generative framework. We use a variational Bayesian method to infer the network connectivity among latent neural states shared by EEG and fMRI. Finally, we use a data-driven symmetric fusion approach to compare representations of the EEG and fMRI against those of a deep convolutional neural network (CNN) in a common similarity space. We show a spatiotemporal hierarchical correspondence in visual processing stages between the human brain and the CNN. Collectively, our results show that the spatiotemporal properties of neural circuits revealed by the analysis of simultaneous EEG-fMRI data can reflect the choice behavior of subjects during rapid perceptual decision making.
75

P300 Event-Related Potentials to a Phoneme Discrimination Task Requiring a Motor Response

Turner, Kaitlyn Chelsea 05 December 2018 (has links)
Speech perception typically takes place within the auditory cortex as evidenced by data collected using quantitative electroencephalography (qEEG). The purpose of this study was to determine if motor responses influence speech perception. We examined P300 event-related potentials during oddball stimulus recognition tasks that either required or did not require a motor response. Based on a review of the literature, it was hypothesized that similar areas of the brain would be activated in both the motor response task and the same task without a motor response immediately following the button-push condition. Two syllables, /ba/ and /ga/, were presented to 20 native English speakers (10 females and 10 males) between the ages of 19 and 30 years. An oddball paradigm consisting of standard and deviant stimuli was presented in three trials: passive listening, mental counting, and button-push. Participants were randomly assigned an order to the trials for passive listening and mental count; however, the button-push response was completed second each time. Data from event-related potentials were recorded for each participant using qEEG and combined across participants to create grand averaged waveforms. Cortical regions of activation were identified and compared across conditions. Results showed that different cortical areas were activated when the mental counting and passive listening conditions were done before and after the motor response condition. Requiring a more complicated response than is typically used to discriminate phonemes, such as with the button push response, may alter speech perception based on the cortical regions activated as measured through source localization. Further research on latencies and amplitudes of the even-related potential (ERP) waveforms is needed to determine how speech perception changes.
76

A COMPARISON OF TASK RELEVANT NODE IDENTIFICATION TECHNIQUES AND THEIR IMPACT ON NETWORK INFERENCES: GROUP-AGGREGATED, SUBJECT-SPECIFIC, AND VOXEL WISE APPROACHES

Unknown Date (has links)
The dissertation discusses various node identification techniques as well as their downstream effects on network characteristics using task-activated fMRI data from two working memory paradigms: a verbal n-back task and a visual n-back task. The three node identification techniques examined within this work include: a group-aggregated approach, a subject-specific approach, and a voxel wise approach. The first chapters highlight crucial differences between group-aggregated and subject-specific methods of isolating nodes prior to undirected functional connectivity analysis. Results show that the two techniques yield significantly different network interactions and local network characteristics, despite having their network nodes restricted to the same anatomical regions. Prior to the introduction of the third technique, a chapter is dedicated to explaining the differences between a priori approaches (like the previously introduced group-aggregated and subject-specific techniques) and no a priori approaches (like the voxel wise approach). The chapter also discusses two ways to aggregate signal for node representation within a network: using the signal from a single voxel or aggregating signal across a group of neighboring voxels. Subsequently, a chapter is dedicated to introducing a novel processing pipeline which uses a data driven voxel wise approach to identify network nodes. The novel pipeline defines nodes using spatial temporal features generated by a deep learning algorithm and is validated by an analysis showing that the isolated nodes are condition and subject specific. The dissertation concludes by summarizing the main takeaways from each of the three analyses as well as highlighting the advantages and disadvantages of each of the three node identification techniques. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
77

Mismatch Negativity Event Related Potential Elicited by Speech Stimuli in Geriatric Patients

Pierce, Dana Lynn 01 June 2019 (has links)
Hearing loss, as a result of old age, has been linked to a decline in speech perception despite the use of additional listening devices. Even though the relationship between hearing loss and decreased speech perception has been well established, research in this area has often focused on the behavioral aspects of language and not on the functionality of the brain itself. In the present study, the mismatch negativity, an event related potential, was examined in order to determine the differences in speech perception between young adult participants, geriatric normal hearing participants, and geriatric hearing-impaired participants. It was hypothesized that a significantly weaker mismatch negativity would occur in the geriatric hearing-impaired participants when compared to the young adult participants and the geriatric normal hearing participants. A passive same/different discrimination task was administered to 10 young adult controls (5 male, 5 female) and eight older adult participants with and without hearing loss (4 male, 4 female). Data from behavioral responses and event related potentials were recorded from 64 electrodes placed across the scalp. Results demonstrated that the mismatch negativity occurred at various amplitudes across all participants tested; however, an increased latency in the presence of the mismatch negativity was noted for the geriatric normal hearing and the geriatric hearing-impaired participants. Dipoles reconstructed from temporal event related potential data were located in the cortical areas known to be instrumental in auditory and language processing for the young adult participants; however, within the geriatric normal hearing and the geriatric hearing-impaired participants, dipoles were seen in multiple locations not directly associated with language and auditory processing. Although not conclusive, it appears that within the geriatric normal hearing and the geriatric hearing-impaired participants there is slower processing of the speech information, as well as some cognitive confusion which leads to fewer available resources for interpretation.
78

Spatial-Spectral-Temporal Analysis of Task-Related Power Modulationsin Stereotactic EEG for Language Mapping in the Human Brain: NovelMethods, Clinical Validation, and Theoretical Implications

Ervin, Brian January 2022 (has links)
No description available.
79

Effect of estrogen therapy and sex on brain structures in aging : importance of lifelong endogenous and exogenous estrogen exposure

Lord, Catherine, 1978- January 2007 (has links)
No description available.
80

Avaliação da estimulação magnética transcraniana navegada no mapeamento anatômico e funcional não invasivo do córtex motor / Evaluation of navigated transcranial magnetic stimulation in anatomical and functional mapping of the motor cortex

Paiva, Wellingson Silva 02 May 2012 (has links)
Introdução e objetivos: A estimulação magnética transcraniana (EMT) é um método exclusivo para estimulação cerebral não-invasiva. A diferença fundamental entre EMT e as outras técnicas disponíveis de mapeamento por imagem do cérebro é que se estabelece haver uma relação de causa e efeito entre a resposta fisiológica evocada e o estímulo magnético. A relação entre estrutura e função como a principal característica, constitui uma modalidade de mapeamento cerebral ainda não estabelecido. Os recentes avanços no processamento de imagem permitiram refinar EMT através de sua combinação com a ressonância magnética utilizando-se do sistema de neuronavegação para orientar o posicionamento da bobina em relação ao córtex. Assim a posição da bobina sobre o couro cabeludo pode ser mantida constante conforme verificado pela orientação de navegação em tempo real com registro visual. O objetivo deste estudo foi avaliar a utilidade da EMT no mapeamento cortical motor em comparação com o mapeamento cirúrgico com estimulação cortical direta. Métodos: O estudo foi conduzido com 30 mapeamentos consecutivos em pacientes com programação de cirurgia para tumores adjacentes ao córtex motor. O mapeamento pré-operatório foi realizado com o sistema de estimulação magnética transcraniana navegada. Esta estimulação gera um pulso magnético através de uma bobina. Este método permite estimulação diretamente no córtex cerebral. Eletródios de superfície foram anexados ao abdutor curto do polegar. Em seguida, o limiar motor em repouso (LM) foi determinado através da aplicação de estimulação para região cortical da mão presumida. Mapeamento peritumoral foi realizado na intensidade de 120% do LM. O mapeamento foi realizando com definição de coordenadas vetoriais. Estas coordenadas foram ponderadas previamente por potencial evocado motor. O mapeamento intra-operatório foi realizado pelo cirurgião antes da ressecção do tumor também com neuronavegação. Os locais de estimulação intraoperatória foram selecionados de forma independente dos resultados da EMT. Resultados: Os pontos obtidos na ECD foram comparados ao mapa da EMT segundo coordenadas vetoriais dos centros geométricos da nuvem de pontos obtidos. Verificamos que a distância dos pontos vetoriais médios (centro geométrico) dos pontos obtidos nos dois métodos de mapeamentos diferiu em 4,85 +/- 1,89 mm. A análise de correlação intraclasse revelou uma correlação de 0,901 com p<0,001. As distâncias dos pontos obtidos para o tumor, identificamos uma alta correlação entre estas variáveis com r=0,87, p=0,001. O Limiar motor na EMT é maior no córtex motor do adjacente ao tumor, comparado ao córtex normal. Não há correlação entre os limiares motores de repouso na EMT e na estimulação elétrica. A exatidão do mapeamento com EMT é mantida em pacientes com déficits motores. A condição clínica dos pacientes melhorou significativamente em 3 meses após a cirurgia. Conclusões: A estimulação magnética transcraniana navegada é uma ferramenta confiável e precisa com congruência de pontos obtidos comparados com o mapeamento intraoperatório. EMT navegada é um método promissor para o mapeamento funcional pré-operatória em cirurgia de tumor adjacente ao motor córtex / Introduction and aims: Transcranial magnetic stimulation (TMS) is a unique method for non-invasive brain stimulation. The fundamental difference between TMS and other available non-invasive brain imaging techniques is that when a physiological response is evoked by stimulation of a cortical area, that specific cortical area is causally related to the response. The relationship between structure and function as the major feature constituting a brain mapping modality can therefore not be established. Recent advances in image processing allowed us to refine TMS by combining magnetic resonance imaging modalities with TMS using a neuronavigation system to measure the position of the stimulating coil and map this position onto a MRI data set. This technique has several advantages over recent TMS mapping strategies. The position of the coil on the scalp can be held constant as verified by real time visual guidance. The aim of this study was to evaluate the usefulness of navigayed TMS for cortical mapping compared with surgical mapping with direct cirtical stimulation. Methods: The study was performed with 30 neurosurgeries for tumors in or near precentral gyrus. Preoperative mapping was performed with the navigated transcranial brain stimulation system. The TMS system calculates the strength, location, and direction of the stimulating electric field in cortical tissue. It allows online targeting of stimulation directly to peritumoral córtex. The coordinates of TMS mapping were weighted by motor evoked potential. Surface electromyography electrodes were attached to abductor pollicis brevis. Next, the resting motor threshold was determined. The motor threshold was then defined traditionally as the lowest stimulation intensity capable of eliciting motor evoked potentials in at least 5 of 10 trials. The motor threshold was reported both as the percentage of the maximum stimulator intensity. Peritumoral mapping was performed at 120% motor threshold. The intraoperative mapping was performed by the surgeon performing the tumor resection. The Intraoperative direct cortical stimulation locations were chosen independently of the TMS results. The direct electric cortical stimulation points were compared with TMS responses according to original distances of vectorial modules. Results: There is a similarity of the points performed in two mapping methods. We found the distances between geometric centers of TMS and DCS 4,85 +/- 1,89. We identified a strong correlation between these vectorial points (r = 0.901 and p < 0.001). The motor threshold in TMS is the largest in the motor cortex near to the tumor compared to normal cortex (p<0,001). Patients with deficits presented excellent accuracy in two methods. The clinical performance of the patient improved significantly 3 months after surgery. Conclusion: TMS allowed for reliable, precise application in brain mapping and the peritumoral somatotopy corresponded well between the 2 modalities. Navigated TMS is a promising method for preoperative functional mapping in motor cortex tumor surgery

Page generated in 0.0542 seconds