• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 10
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modulation of breast cancer tumour-initiating cells in cell lines and patient-derived tumour xenografts

Sandoval, José Luis Bico Rosa Gamero January 2015 (has links)
No description available.
2

Influence of growth and migration of human breast cancer cell by human C1 inhibitor N-terminus

Chen, Gen-yen 03 September 2010 (has links)
C1 inhibitor (C1 INH) is a member of the serine protease inhibitor (serpin) superfamily. It is the only physiological inhibitor of protease C1r and C1s in the complement system. C1 INH is a single chain glycoprotein with apparent molecular weight of 105 KDa, consisting of 478 amino acids. C1 INH N-terminal domain includes first 98 amino acids with 10 definite and 7 potential glycosylation site. Various of carbohydrates are present on the cell surface and component of ECM (extracellular matrix) in every eukaryotic cell, including both cancer cells and cells that are important for tumur survival. Carbohydrates on the cancer cell surface have been shown to be important in many aspects of cancer cell physiological processes, involved in cell growth and cell adhesion. Carbohydrates are also able to bind and interact with growth factors and other proteins that trigger signal transduction. Interfere carbohydrates maybe offer a useful therapeutic approach for treating cancers. In order to understand whether the C1 INH NT98 polypeptides can influences cancer or not, we amplified a DNA fragment encoding C1 INH N-terminal domain 98 residues (C1 INH NT98) by PCR, and transfer to the plasmid pGEX-2T, than use E.coli (BL21 strain) to express the non-glycosylated polypeptides, and further analyze the influence of the effective roles exhibited by the polypeptides non-glycosylated on breast cancer cell MDA-MB-435s. Proliferation and migration assays in our experiment showed that non-glycosylated C1 INH NT98 can inhibited breast cancer cell growth and migration, and the mechanism needed to be clarified clearly through extensive research.
3

Enhancement of growth and migration of human breast cancer cell (MDA-435S) by human C1 inhibitor

Chao, Te-fang 13 January 2011 (has links)
C1-esterase inhibitor (C1-inh) can inhibitor the first complement protein as C1s and C1r activity to reach adjust classical pathway, avoid excessive activation of the complement system to cause disease. C1-inhibitor protein composed of 478 amino acids with two domains: C terminal domain (serpin domain) and N terminal domain. The early focus has been to angioedema associated with cancer found so far. So the purpose of the study was to investigate whether the C1-inh cause for the breast cancer cell proliferation and migration. We use recombinant gene transform Escherichia coli strain BL21(DE3) and expression. Recombinant protein was purified using affinity column. Influence of proliferation and migration on breast cancer cells were tested by purified recombinant C1-inh. In breast cancer cell proliferation results showed, C1-inh significant proliferation of breast cancer, and when the higher concentration, the longer the incubation time, the remarkable effect of promoting proliferation is even more obvious. The results in breast cancer cell migration is also significant in the C1-inh to promote breast cancer cell migration, and when the higher concentration of the longer incubation time, the significant increased migration is more effective. Therefore, this study does note C1-inh to promote breast cancer cell proliferation and migration.
4

Studies of natural vitamin E forms and their synthetic derivatives for potential anticancer application in human breast cancer cell lines and mouse tumor models

Park, Sook Kyung 14 October 2011 (has links)
Vitamin E is a group of naturally occurring fat soluble compounds which consists of eight distinct forms of tocopherols and tocotrienols. Although a well-defined physiological function of vitamin E is as an antioxidant, beneficial effects of individual vitamin E compounds on chronic human diseases such as cancer need to be better understood. Studies in this dissertation investigated potential application of gamma-tocopherol (gamma-T), gamma-tocotrienol (gamma-T3) or synthetic derivatives of tocotrienols as anticancer agents in comparison to alpha-tocopherol (alpha-T), its redox-silent acetic acid derivative (alpha-TEA) or alpha-tocotrienol (alpha-T3). Redox-silent derivatives of alpha- and gamma-T3; namely alpha-T3EA and gamma-T3EA exhibited potent anti-proliferative and proapoptotic activities in a murine mammary cancer cell line as well as in human breast cancer cell lines. Moreover, studies using human vascular endothelial cells in cell culture showed that the tocotrienol derivatives exhibited strong antiangiogenic activities which were markedly improved over those of the parent compounds. An antitumor efficacy study using the 66cl-4-GFP syngeneic mouse mammary tumor model showed that each tocotrienol derivative, when delivered in the diet, significantly suppressed mammary tumor growth; however serum and tissue concentrations of these novel compounds were lower than those of alpha-TEA, suggesting that the next generation of vitamin E derivatives will need to be modified to improve bioavailability. On the other hand, some natural-source vitamin E forms, especially gamma-forms, display anticancer activities without any chemical modification in both in vitro cell culture studies and in vivo animal models. Dietary delivery of gamma-T3 suppressed tumor growth in a syngeneic implantation mouse mammary cancer model by inhibiting cell proliferation and inducing apoptosis. Cell culture studies using human breast cancer cells showed that gamma-T3 triggered apoptosis by inducing endoplasmic reticulum (ER)-stress mediated by acid sphingomyelinase (ASMase) action. Activation of stress-activated mitogen-activated protein kinases (MAPKs), JNK and p38, was associated with gamma-T3-induced ER stress followed by upregulation of extrinsic death receptor-5 (DR5) expression in a CHOP transcription factor dependent manner. Gamma-T also triggered extrinsic apoptosis signaling by increasing DR5 mRNA, protein and cell surface expression levels followed by mitochondria-dependent apoptotic signaling. In agreement with in vitro studies, gamma-T delivered in the diet suppressed the tumor growth of MDA-MB-231-GFP human breast cancer cells in a xenograft model but the antitumor activity of gamma-T was hampered by co-administration of alpha-T. The preferential tissue retention of alpha-T over gamma-T could be overcome by use of sesamin, a dietary source of human cytochrome P450 inhibitor. Based on data presented, gamma-T and gamma-T3 show preclinical potential for cancer treatment either as single agents or in combination with other agents. / text
5

Characterization of Effects of Muc1 Expression on Epidermal Growth Factor Receptor Signaling in Breast Cancer

Pochampalli, Mamata Rani January 2006 (has links)
EGF receptors are key regulators of cell survival and growth in normal and transformed tissues. Ligand binding results in formation of homo/hetero dimers of these receptors, followed by activation of the kinase activity and subsequent tyrosine phosphorylation of many downstream molecules. The activation of these receptors is not only mediated by the binding of their cognate ligands, but by transactivaton by other molecules as well. Recent studies have identified an oncogenic glycoprotein MUC1 as a binding partner for EGFR and that MUC1 expression can potentiate EGFR-dependent signal transduction. After receptor activation, EGFR is typically downregulated via an endocytic pathway that results in receptor degradation or recycling. We report here that MUC1 expression inhibits the degradation of ligand-activated erbB1. In addition, MUC1 expression results in prolonged activation of Akt, but not ERK1,2 MAPKinase. The MUC1-mediated protection against degradation occurs with a decrease in EGF-stimulated ubiquitination of erbB1, and an increase in erbB1 recycling. We then utilized the WAP-TGFα transgenic mouse model of breast cancer and determined that a loss of Muc1 expression dramatically alters mammary tumor progression. While 100% of WAP-TGFα/Muc1^(+/+) mice form mammary gland tumors, only 37% of WAP-TGFα/Muc1^(-/-) form tumors. Furthermore, expression of cyclin D1 expression is significantly suppressed in tumors derived from WAPTGFα/Muc1^(-/-) animals, and loss of Muc1 expression resulted in a significant inhibition in the formation of hyperplastic lesions in the mammary gland. We also observed metastatic pulmonary adenocarcinoma (1/29) and perivascular lymphoma of unknown origin (28/29) in the WAP-TGFα transgenic mice but not in the WAP TGFα/Muc1^(-/-) animals. To determine the effects of Muc1 expression on metastasis in a model lacking perivascular lymphoma, we crossed MMTV-Wnt-1 and MMTV-MUC1 transgenic mice and evaluated interactions between Muc1 and EGFR. Although the MMTV-Wnt-1 mice are non-metastatic, a majority (6/10) of the bitransgenic MMTVWnt- 1/MMTV-MUC1 formed pulmonary metastases. Furthermore, overexpression of MUC1 increases the breast cancer cell invasion in vitro. The MUC1 induced increase in invasion is found to be EGF and EGFR-kinase dependent. Collectively, these data indicate that MUC1 expression contributes to many of the hallmarks of cancer and in addition, is an important modulator of EGFR-associated mammary tumor progression.
6

Assessing the cyto-genotoxic impacts of un-neutralised and pH-neutralised acid mine drainage on the human breast cancer cell line, MCF-7

Botha, Shirmone 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The use of toxicity tests to evaluate the quality of streams affected by mixtures such as acid mine drainage (AMD), adds value to assessments whereby site-specific toxicological data may identify toxicants that pose a threat to humans. To successfully evaluate the risk of combined mixtures, an improved understanding of the individual components, their uptake, metabolism, excretion and mode of action is required. This study aimed to identify the extent of AMD toxicity in a dose dependant manner on the MCF-7 cell line. The first study site associated with gold mining was chosen as the Tweelopies Stream situated in the Gauteng province of South Africa. The AMD effluent (un-neutralised) contaminating the Tweelopies Stream had undergone pH-neutralisation using a reactor-bed limestone technology incorporating the use of both calcium carbonate (CaCO3) powder and limestone beds. The second study site, the Kromdraai River, is situated in the eMalahleni region of South Africa where a predominance of coal mining exists. The pH -neutralisation of the AMD (un-neutralised) contaminated Kromdraai River was performed using a caustic soda (NaOH) precipitation technique. This study demonstrated the rapid and effective application of the comet assay as a screening tool for AMD-associated DNA breakages in the human cell line, MCF-7. Moreover, the study analysed parameters of cellular survival, DNA fragmentation and variations in morphologies indicative of cellular death. Collectively, the cyto-genetic aberrations observed in the MCF-7 cells as a result of exposure to gold and coal mining associated AMD, confirms the urgency of incorporating high-throughput screening in ecological toxicity assessment to evaluate cellular damage at genetic levels in low dose exposures where detection might be missed. / AFRIKAANSE OPSOMMING: Die gebruik van toksisiteitstoetse om die gehalte van strome te evalueer wat geraak word deur mengsels soos suur mynwater (SM), gee waarde aan spesifieke toksikologiese data van gifstowwe wat 'n bedreiging vir die mens kan identifiseer. Om die risiko van gekombineerde mengsels en hul individuele komponente beter te begrip en suksesvol evalueer, is hul opname, metabolisme, uitskeiding en modus van aksie nodig. Hierdie studie het gepoog om die omvang van SM-toksisiteit in 'n dosis afhanklike wyse op die MCF-7-sellyn te identifiseer. Die eerste studie-area wat gekies is, hou verband met goudmyn-ontginning, en is die Tweelopiesspruit, geleë in die Gauteng-provinsie van Suid-Afrika. Die SM-uitvloeisel (on-geneutraliseerde) wat die Tweelopiesspruit besoedel, het pH-neutralisasie ondergaan met behulp van die integrasie van 'n reaktor-bed kalksorpsietegnologie wat gebruik maak van beide kalsiumkarbonaat (CaCO3) poeier en kalksteenbeddens. Die tweede studie-area, is die Kromdraairivier geleë in die eMalahleni-streek van Suid-Afrika, waar steenkoolontginning die oorheersende aktiwiteit is. Die pH-neutralisasie van die SM (on-geneutraliseerde) in die geval van die Kromdraairivier word met behulp van 'n bytsoda (NaOH) neerslag tegniek, uitgevoer. Hierdie studie het die komeet-toets getoon as 'n vinnige en doeltreffende toepassing vir SM-geassosieerde DNA-breekskade in die menslike sel lyn, MCF-7. Verder het die studie parameters van sellulêre oorlewing, DNA-fragmentasie en variasies in sel morfologieë wat ‘n aanduiding van sellulêre dood is, ontleed. Gesamentlik dui die resultate daarop dat die sitogenetiese afwykings wat in die MCF-7-selle waargeneem is, as 'n gevolg van blootstelling aan goud- en steenkool-geassosieerde SM is. Die studie het verder die dringendheid van die integrasie van hoë-deurset tegnologieë in ekologiese toksisiteitstoetse in selle wat genetiese skade mag ondergaan, na 'n lae dosis blootstelling waar opsporing dalk gemis word, ondersteun.
7

Sinalização celular para apoptose em linhagem celular de adenocarcinoma (MCF-7) e carcinoma ductal invasivo de mama (ZR 7531) tratados com alcalódes isolados de Pterogyne nitens

Duarte, Roberta Aparecida [UNESP] 31 May 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-05-31Bitstream added on 2014-06-13T18:41:52Z : No. of bitstreams: 1 duarte_ra_dr_arafcf.pdf: 4649782 bytes, checksum: 99bc00374a88b89ba36ff755fc732fa3 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Universidade Estadual Paulista (UNESP) / O câncer de mama é a maior causa de morbidade e mortalidade entre as mulheres no mundo. Pesquisas revelam vários fatores prognósticos e preditivos para a identificação de pacientes com alto risco de agressividade, metastases e doença recorrente na condição de combater estas estatísticas. Por esta razão, é evidente a necessidade do desenvolvimento de estratégias de tratamento mais eficazes. Estudos prévios com Pterogyne nitens Tul. (Fabaceae-Caesalpinioideae), uma planta nativa do Brasil resultou o isolamento de dois alcalóides guanidínicos. Exibiram atividade seletiva direcionada a DNA deficiente de reparo, sugerindo potencial atividade anticâncer. Objetivo: O objetivo do presente estudo foi avaliar a citotoxicidade e apoptose induzidas pelos alcalóides pteroginina (PGN) and pteroginidina (PGD) em linhagem de adenocarcinoma (MCF-7) e carcinoma ductal invasivo (ZR-7531). Materiais e Métodos: As duas linhagens celulares foram tratadas pelos alcalóides em várias concentrações (0.25 – 10 mM) em dois tempos, t0 (24h) e t24 (24h seguido por 24h pós-tratamento). O ensaio de citotoxicidade foi determinado pelo teste de MTT; a morte celular (apoptose e necrose) foi analisada usando os métodos Hoechst 33342/iodeto propídio, Kit de Anexina V-FITC e atividade de Caspases 3/7. Resultados: Os tratamentos com os alcalóides demonstraram citotoxicidade concentração-resposta nas linhagens de câncer de mama. Para avaliação da apoptose foi observado um intense efeito concentraçãoresposta em apoptose tardia/necrose e discreto sinal para apoptose precoce em todas concentrações (p<0,01). No ensaio Hoechst/iodeto, observou diferença significante entre os estágios de apoptose precoce e tardia de ambas linhagens. A pteroginina no período t0 e t24, e pteroginidina no período t0 demonstraram possuir intenso efeito concentração... / Breast cancer is a major cause of morbidity and mortality among women worldwide. Research has elucidated several specific prognostic and predictive factors to identify patients at high risk of the aggressive disease, metastasis and recurrence of the disease in order to combat these statistics. For this reason, there is an obvious need to develop more efficacious treatment strategies. Previous studies on Pterogyne nitens Tul. (Fabaceae-Caesalpinioideae), a native plant of Brazil, resulted in the isolation of two guanidine alkaloids, exhibited selective activity towards a DNA repair-deficient, suggesting potential anti-cancer activity. Objective: The aim of the present study was to evaluate the citotoxicity and apoptosis induced by alkaloids pterogynine (PGN) and pterogynidine (PGD) in human adenocarcinoma cell line (MCF-7) and human invasive ductal carcinoma cell line(ZR-7531). Material and Methods: The two cell lines were treated by both alkaloids at several concentrations (0.25 – 10 mM) and two time points, 24h (t0) and 24h followed by 24h pos-treatment (t24). The cytotoxicity assay was determined by MTT assay; the cell death (apoptosis and necrosis) were analyzed using the dye Hoechst 33342/propidium iodide, Annexin V-FITC and Caspase 3/7 activity. Results: The treatments with the alkaloids demonstrated citotoxicity effect concentrationresponse in breast cell lines. Apoptosis evaluation, pterogynine and pterogynidine has an intense effect concentration-response of late apoptosis/necrosis and a discrete signal of early apoptosis in all of the concentrations (p<0.01). Hoechst/iodide assay, it was observe significant difference among the stages of early and late apoptosis in the both cells lines. Pterogynine for the period of t0 and t24, and pterogynidine for the period of t0 demonstrated to possess an intense concentrationresponse... (Complete abstract click electronic access below)
8

Cancer systems biology : is the devil in the glycolytic detail?

Blount, Kathryn January 2014 (has links)
An approach to investigating cancer that has recently seen resurgence of interest is the “Warburg effect”. Otto Warburg originally described the altered metabolism of cancer cells and identified that they exhibit an increase in glucose uptake and lactate production. This up-regulation of glycolytic flux and glucose transport is now associated with 90% of cancers. In order to improve the overall understanding of the “Warburg effect” two forms of systems biology have been implemented - comparative in vitro analysis of kinetic activities and dynamic modelling. In this analysis, human breast cancer cell lines MCF-7, MDA-MB-231 and T47D and a non transformed breast cell line MCF-10A were used to identify key similarities and differences in kinetic activities across the glycolytic pathway. Additionally, activities of key glycolytic enzymes hexokinase, pyruvate kinase and lactate dehydrogenase were compared under hypoxic conditions to further understand regulation of cancer cells. The most prominent feature that arose from comparing the kinetic activities of the three malignant and one non-malignant cell line is that each cell line has its own specific set of activities for glycolysis. This indicates that there are differences in regulation across the glycolytic pathway for each of these cell lines. This is of specific interest in the search for therapeutic targets. Further, we determined that despite the prominence of oncogenic HIF signalling activities of hexokinase, pyruvate kinase and lactate dehydrogenase were further modulated by growth under hypoxic conditions. Despite the lack of obvious distinct kinetic differences between the non-cancerous and cancerous cells lines some discernible differences are apparent when modelled in silico.
9

Development Of Bio-Photonic Sensor Based On Laser-Induced Fluorescence

Kim, Chan Kyu 15 December 2007 (has links)
Laser-induced fluorescence (LIF) has been shown to be potentially useful for identifying microorganisms in real time. It is a selective and sensitive technique because the excitation is performed at one wavelength while the emission is monitored at longer wavelengths so that background from the excitation source can be eliminated. This specialized optical property of LIF can be applied to development of an optical sensor capable of quickly, non-invasively, and quantitatively probing complex biochemical transformations in microorganisms. Various bio-photonic optical fiber sensors based on laser-induced fluorescence (LIF) spectroscopy were developed as diagnostic tools for microorganisms. In the first phase, the enhancement of the sensitivity and selectivity of the optical sensor system focused on diagnosis of human breast cancer cell lines and Azotobacter vinelandii (an aerobic soil-dwelling organism). Autoluorescence spectra from human breast cancer cell lines and Azotobacter vinelandii corresponding to different growth environments were investigated. Then, the study has expanded to include the use of gold nanoparticles for specific DNA detection. The use of gold nanoparticales opens a door into construction of a compact, highly specific, inexpensive and userriendly optical fiber senor for specific DNA detection. An optical fiber laser-induced fluorescence (LIF) sensor based has been developed to detect single-strand (ss) DNA hybridization at the femtomolar level. Effects of various experimental parameters and configuration were investigated in order to optimize sensor performance and miniaturize sensor size.
10

The role of tyrosyl phosphorylated PAK1 in the synergetic effect of estrogen and prolactin in breast cancer cells

Oladimeji, Peter Olusoji January 2015 (has links)
No description available.

Page generated in 0.0661 seconds