• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 12
  • 12
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dendrochronology of Bristlecone Pine Prior to 4000 B.C.

Ferguson, C. W. 10 1900 (has links)
International Radiocarbon Dating Conference, Lower Hutt City, Wellington, New Zealand, 18-25 October 1972 / A 7104 -year tree -ring chronology for bristlecone pine was published in tabular form in 1969. Since then, the chronology has been improved in quality and extended in time. Twenty-one pieces of wood, representing separate trees, have been identified for the period prior to 4000 B.C. and these have made possible a chronology extension to nearly 8200 years. In this paper, the specimens are described in terms of the time range each represents and their statistical parameters relating to the quality of tree-ring record they contain. These specimens not only have extended the climatic tree-ring chronology, but also have made possible the calendar-year dating of additional samples for calibration of the radiocarbon time scale.
2

BRISTLECONE PINE (PINUS LONGAEVA) IN RELATION TO ENVIRONMENTAL FACTORS AND SOIL PROPERTIES IN EAST-CENTRAL NEVADA

Beasley, Roy Scott, 1942- January 1972 (has links)
No description available.
3

Dendrochronology of Bristlecone Pine in East-Central Nevada

Ferguson, C.W. 30 June 1970 (has links)
Terminal Report submitted to Regional Forester, U.S. Forest Service, Ogden, Utah / In accordance with a cooperative agreement between the Forest Service and the Laboratory of Tree-Ring Research at University of Arizona for a joint inventory and dendrochronological study of bristlecone pine. / In the Administrative Study Plan, as set forth 10 August 1966 and approved 16 August 1966, it was proposed that a joint inventory and dendrochronological study of bristlecone pine, Pinus aristata Engelm., be conducted by the Forest Service and the University of Arizona on the Snake, Mt. Moriah, Ward Mountain, and the Schell Creek divisions of the Humboldt National Forest in Nevada. Through a closely integrated inventory and dendrochronological program designed to take full advantage of the unique scientific resources available at the University of Arizona, the proposed study was expected to yield maximum information on the age, volume, growth, extent, and area of bristlecone pine and to provide authoritative data for interpretive and future planning uses. Dr. J. O. Klemmedson of the Department of Watershed Management, for the inventory phase, and Dr. C. W. Ferguson of the Laboratory of Tree -Ring Research, for the dendrochronological phase, were co- investigators of the project.
4

THE TAXONOMY AND EPIDEMIOLOGY OF DWARF MISTLETOES PARASITIZING WHITE PINES IN ARIZONA

Mathiasen, Robert L. January 1977 (has links)
No description available.
5

Analysis of Radial Growth Patterns of Strip-Bark and Whole-Bark Bristlecone Pine Trees in the White Mountains of California: Implications in Paleoclimatology and Archaeology of the Great Basin

Ababneh, Linah Nabeeh January 2006 (has links)
Dendrochronology focuses on the relationship between a tree's growth and its environment and thus investigates interdisciplinary questions related to archaeology, climate, ecology, and global climate change. In this study, I examine the growth of two forms of bristlecone pine (Pinus longaeva): strip-bark and whole-bark trees from two subalpine adjacent sites: Patriarch Grove and Sheep Mountain in the White Mountains of California. Classical tree-ring width analysis is utilized to test a hypothesis related to a proposed effect of the strip-bark formation on trees' utilization of atmospheric carbon dioxide. This effect has grown to be controversial because of the dual effect of temperature and carbon dioxide on trees' growth. The proposed effect is hypothesized to have accelerated growth since 1850 that produced wider rings, and the relation of the latter topic to anthropogenic activities and climate change. An interdisciplinary approach is taken by answering a question that relates temperature inferences and precipitation reconstructions from the chronologies developed in the study and other chronologies to Native Americans subsistence settlements and alpine villages in the White Mountains. Strip-bark trees do exhibit an enhanced growth that varies between sites. Strip-bark trees grow faster than whole-bark trees, however, accelerated growth is also evident in whole-bark trees but to a lesser degree. No evidence can be provided on the cause of the accelerated growth from the methods used. In the archaeological study, 88% of the calibrated radiocarbon dates from the alpine villages of the White Mountains cluster around above average precipitation, while no straightforward relationship can be established with temperature variations. These results confirm that water is the essence of life in the desert.
6

Assessment of Great Basin Bristlecone Pine (Pinus longaeva D.K. Bailey) Forest Communities Using Geospatial Technologies

Burchfield, David Richard 20 July 2021 (has links)
Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) is a keystone species of the subalpine forest in the Great Basin and western Colorado Plateau ecoregions in Utah, Nevada, and California. Bristlecone pine is also the world's longest-lived non-clonal organism, with individuals occasionally reaching ages up to 5,000 years old. Because of its longevity, bristlecone pine contains an important proxy record of climate data in its growth rings. Despite its ecological and scientific importance, bristlecone pine's distribution and associated environmental drivers are poorly understood. Geospatial technologies, including unmanned aircraft systems (UAS), remote sensing, geographic information systems (GIS), and spatial modeling techniques can be used to quantify and characterize biotic and abiotic factors that constrain the fundamental and realized niches of bristlecone pine and other subalpine forest species. In Chapter 1, we describe workflows and important technical and logistical considerations for collecting aerial imagery in mountainous areas using small UAS, enabling high-quality remotely sensed datasets to be assembled to study the ecology of subalpine forests. In Chapter 2, we discuss a unique outlier population of bristlecone pine found in the Stansbury Mountains, Utah. We used GIS to delineate boundaries for five small stands of bristlecone pine and examined two competing hypotheses that could explain the species' presence in the range: 1) that the current population is a relict from the Pleistocene, or 2) that long-distance dispersal mechanisms led to bristlecone pine's migration from other mountain ranges during or after the warming period of the Pleistocene/Holocene transition. Potential migration routes and barriers to migration were considered in our effort to understand the dynamics behind the presence of this unique disjunct population of bristlecone pine. Chapter 3 describes a comprehensive mapping effort for bristlecone pine across its entire distribution. Using data from historic maps, vegetation surveys, herbarium records, and an online ecological database, we compiled nearly 500 individual map polygons in a public-facing online GIS database representing locations where bristlecone pine occurs. Using these occurrence data, we modeled the suitable habitat of the species with Maximum Entropy (MaxEnt), examining the relative importance of 60 environmental variables in constraining the species distribution. A probability map was generated for bristlecone pine, and the environmental variables were ranked in order of their predictive power in explaining the species distribution. We found that January mean dewpoint temperature and February precipitation explained over 80% of the species distribution according to the MaxEnt model, suggesting that the species favors drier air conditions and increased snowfall during winter months. These three studies demonstrate that geospatial tools can be effectively used to quantify and characterize the habitat of bristlecone pine, leading to improved management and conservation of the species in the face of multiple threats, including mountain pine beetle (MPB), white pine blister rust (WPBR), and possible habitat constriction due to climate change.
7

Great Basin Bristlecone Pine Resistance to Mountain Pine Beetle: An Evaluation of Dendroctonus ponderosae Host Selection Behavior and Reproductive Success in Pinus longaeva

Eidson, Erika L. 01 May 2017 (has links)
Over the last two decades, mountain pine beetle (Dendroctonus ponderosae) populations reached epidemic levels across much of western North America, including high elevations where cool temperatures previously limited beetle persistence. Many high-elevation pine species are susceptible hosts and experienced high levels of mortality in recent outbreaks, but co-occurring Great Basin bristlecone pine (Pinus longaeva), the longest-living non-clonal organism, were not attacked. I assessed Great Basin bristlecone pine resistance to mountain pine beetle by evaluating mountain pine beetle host selection behavior and reproductive success in this species. To evaluate mountain pine beetle host selection preference for Great Basin bristlecone pine, I used no-choice 48-hour attack box experiments that confined pioneering female beetles onto pairs of living Great Basin bristlecone and limber pine (P. flexilis), a susceptible host tree species. To investigate the effect of induced tree defenses on host selection behavior, I repeated the tests on paired sections of Great Basin bristlecone and limber pines that had been recently cut, thereby removing their capacity for induced defensive reactions to an attack. Mountain pine beetles avoided Great Basin bristlecone pine relative to limber pine, suggesting that Great Basin bristlecone pine has a high level of resistance to mountain pine beetle due at least in part to stimuli that repel pioneering females from initiating attacks, even when induced defenses are compromised. To investigate mountain pine beetle reproductive success in Great Basin bristlecone pine, I compared the mating success, fecundity, and brood production of mountain pine beetle parents placed in cut Great Basin bristlecone pine bolts with that of mountain pine beetles placed in cut bolts of limber pine and lodgepole pine (P. contorta), two susceptible species. Initial reproductive development was similar in all three tree species, but nearly all brood in Great Basin bristlecone pine died before emerging. The extensive offspring mortality observed in Great Basin bristlecone pine may be a key evolutionary driver behind mountain pine beetle aversion to the species. These findings suggest that Great Basin bristlecone pine is a highly resistant species with low vulnerability to climate-driven increases in mountain pine beetle outbreaks at high elevations.
8

Impact of Climate Variability on the Frequency and Severity of Ecological Disturbances in Great Basin Bristlecone Pine Sky Island Ecosystems

Gray, Curtis A 01 May 2017 (has links)
Great Basin bristlecone pine (GBBP) (Pinus longaevaBailey) is one of the longest-lived organisms on Earth, and is one of the most highly fragmented high elevation conifer species. Throughout the Great Basin of the Intermountain West, GBBP are being impacted by changing disturbance regimes, invasive species, and climate change. To better understand the effects of climate variability and ecological disturbances in GBBP systems, three studies were designed and implemented. The first characterized the distribution of forest fuel in stands of GBBP and predicted how fuels may change under future climate scenarios. Using the Forest Inventory Analysis (FIA) plot variables of tree species, height, diameter at breast height (DBH), canopy base height (CBH), coarse (CWD) and fine (FWD) woody debris across elevational gradients, this study examined the effects of changes to fuel loading on predicted changes in fire behavior and severity. All classes of FWD decreased with elevation, and only 1000-hr fuels remained constant across elevational transects. This, combined with lower CBH and foliar moisture and increasing temperatures due to climate change, suggested increased fire potential at the GBBP treeline. The second study examined the role of volatile organic compounds (VOCs) and tree chemistry and their response to the environment. VOCs and within needle chemistry were collected and analyzed along elevational gradients near the northern and southern limits of GBBP. Random Forest analysis distinguished elevation using VOCs, with 83% accuracy, and identified the compounds most important for classification. Ordination revealed that temperature, heat load index, and relative humidity were each significantly correlated with VOCs. Within-needle chemistry provided less predictive value in classifying elevation (68% accuracy) and was correlated only with heat load index. These findings suggest that GBBP VOCs are highly sensitive to the environment. The final study explored the role of VOCs in host selection of mountain pine beetle (MPB). Mountain pine beetles oriented toward VOCs from host limber pine (Pinus flexilis James) and away from VOCs of non-host GBBP using a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly chose limber pine over GBBP. While there were only a few notable differences in VOCs collected from co-occurring GBBP and limber pine, 3-carene and D-limonene were produced in greater amounts by limber pine. There was no evidence that 3-carene is important for beetles when selecting trees, however, addition of D-limonene to GBBP VOCs disrupted the ability of beetles to distinguish between tree species. Climate change will impact how forests are managed and this research could provide insight into the mechanisms underlying the incredible longevity of this iconic tree species.
9

Dendrochronology of Bristlecone Pine

Ferguson, C. W., Graybill, D. A. 31 October 1981 (has links)
"A Terminal Report Submitted 31 October, 1981 on the National Science Foundation grant EAR 78-04436 with the assistance of the Department of Energy contract no. EE-78-A-28-3274"
10

Dendrochronology of Bristlecone Pine

Ferguson, C. W., Graybill, D. A. 31 May 1985 (has links)
"A Final Technical Report Submitted 31 May 1985 on the National Science Foundation grant EAR-8018687 for the period 1 April 1981 to 31 October 1984 with the assistance of the Department of Energy contract no. DE-AC02-81EV10680 covering the period 1 May 1981 to 31 October 1982" / Since Edmund Schulman’s initial interest in 1953, the Laboratory of Tree-Ring Research has conducted dendrochronological studies of bristlecone pine (Pinus longaeva D. K. Bailey, sp. Nov.) in the White Mountains of east-central California where living trees reach ages in excess of 4,000 years. The focus of this report relates to the support by the Geology and Anthropology sections in the National Science Foundation under grant EAR-8018687 for the period 1 April 1981 to 31 October 1984 with the assistance of the Department of Energy contract no. DE-AC02-81EV10680 covering the period 1 May 1981 to 31 October 1982. A summary of this research was recently published in Radiocarbon (Ferguson and Graybill 1983). In most cases various facets of the work were related to projects sponsored by all agencies. Therefore the full range of activities during that period is described herein. The primary project goals were: To extend the bristlecone pine chronology from the White Mountains of California beyond 6700 B.C. and strengthen it by incorporating additional specimens. To develop bristlecone pine chronologies in new areas for applications in archaeology, isotopic studies, and other earth sciences. To furnish dendrochronologically dated wood to researchers engaged in the study of past variations in carbon isotopes and climate.

Page generated in 0.0597 seconds