• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 46
  • 40
  • 13
  • 10
  • 8
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 246
  • 74
  • 74
  • 47
  • 42
  • 40
  • 35
  • 32
  • 31
  • 30
  • 29
  • 29
  • 29
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Modelling and Testing Strategies for Brittle Fracture Simulation in Crystalline Rock Samples

Ghazvinian, Ehsan 24 September 2010 (has links)
The failure of brittle rocks around deep underground excavations due to the high induced stress is controlled by the crack accumulation in the rock. The study shows that the damage initiation strength, CI, corresponds to the long-term strength, and the short-term strength of the brittle rocks in-situ is the crack interaction strength, CD. Therefore the damage thresholds that are being used for the calibration and validation of numerical models are important parameters in the design of underground structures. The accurate detection of the damage thresholds is important as they define the in-situ behaviour of the brittle rocks. The two most common methods of detecting damage thresholds are the Acoustic Emission method and the strain measurement method. Apparent discrepancy that exists between the accuracy of these methods was the author’s motivation for comparing these two methods on Stanstead and Smaland granites. The author introduced two new parameters based on the measured strains for improving the strain measurement method. Based on the comparisons, the author is of the opinion that the Acoustic Emission method is a more accurate method of detecting damage thresholds. Numerical models are an important tool in the design of underground structures. The numerical methods that are able to simulate fractures explicitly have the ability to predict the brittle failure, the density and the extension of the microcracks around the opening. Itasca’s Particle Flow Code (PFC) was used in this study due to its potential to simulate fractures explicitly. Calibration of PFC models to Unconfined Compressive Strength properties of the rock does not mean that the model will behave correctly under other confining stresses or in tension. The author has tried to solve this problem by different methods and developing new procedures. Improvements in the model behaviour have been achieved but more work is required. The definition, and detection and calibrated simulation of rock damage thresholds for calibration of numerical models is helpful for a successful design of underground excavations and long term, lower bound strength, a critical design parameter for deep geological repositories for the storage of nuclear wastes, for example. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2010-09-23 13:59:28.795
52

Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions

Bewick, Robert P. 07 January 2014 (has links)
The shear rupture of massive (intact non-jointed) brittle rock in underground high stress mines occurs under a variety of different boundary conditions ranging from constant stress (no resistance to deformation) to constant stiffness (resistance to deformation). While a variety of boundary conditions exist, the shear rupture of massive rock in the brittle field is typically studied under constant stress boundary conditions. According to the theory, the fracturing processes leading to shear rupture zone creation occur at or near peak strength with a shear rupture surface created in the post-peak region of the stress-strain curve. However, there is evidence suggesting that shear rupture zone creation can occur pre-peak. Limited studies of shear rupture in brittle rock indicate pre-peak shear rupture zone creation under constant stiffness boundary conditions. This suggests that the boundary condition influences the shear rupture zone creation characteristics. In this thesis, shear rupture zone creation in brittle rock is investigated in direct shear under constant normal stress and normal stiffness boundary conditions. It is hypothesized that the boundary condition under which a shear rupture zone is created influences its characteristics (i.e., shear rupture zone geometry, load-displacement response, shear rupture zone creation relative to the load-displacement curve, and peak and ultimate strengths). In other words, it is proposed that the characteristics of a shear rupture zone are not only a function of the rock or rock mass properties but the boundary conditions under which the rupture zone is created. The hypothesis is tested and proven through a series of simulations using a two dimensional particle based Distinct Element Method (DEM) and its embedded grain based method. The understanding gained from these simulations is then used in the analysis and re-interpretation of rupture zone creation in two mine pillars. This is completed to show the value and practical application of the improved understanding gained from the simulations. The re-interpretation of these case histories suggests that one pillar ruptured predominately under a constant stress boundary condition while the other ruptured under a boundary condition changing from stiffness to stress control.
53

Bonded-particle Modeling of Thermally Induced Damage in Rock

Wanne, Toivo 28 September 2009 (has links)
The objective of the research presented in this thesis is to validate the parallel-bonded modeling method in the context of coupled thermo-mechanical simulations. The simulation results were compared with analytical and experimental data, in the attempt to assess the usability of this particular modeling method. Previous studies of numerical approaches that related to the thermal fracturing of hard rock had used continuum-based models with constitutive relations. The simulations in the thesis were conducted using Particle Flow Code (PFC) which was chosen for the research because of its several benefits. The code has unique features such as spontaneous damage development without imposed conditions, and emergent properties such as material heterogeneity, and dynamic behavior giving possibility to monitor synthetic seismic events. The basic code has been available since 1995 and research using the code has produced hundreds of publications. The thermal option for the code is a recent addition and lacked verification, validation and applications. The thesis is the answer for that. In the course of the research work new particle clustering and grouping routines were developed and tested. Three modeling studies were conducted varying from laboratory to field scales. The 2D modeling study of the heated cylinder experiment yielded similar results both in fracture-behavioral and acoustic emission (AE) magnitude ranges when compared with the laboratory data. The 3D cubic numerical specimens, created with breakable particle clusters, were heated, and the induced damage was observed by P wave velocity measurements. The results showed trends comparable to the laboratory data: P wave velocity decreases with rising temperatures of up to 250°C and cluster-boundary cracking occurs, comparable to grain-boundary cracking in the heated rock samples. The large 2D tunnel models captured the phenomena observed in-situ displaying the difference in the damage to the roof and floor regions, respectively. This damage was due to the filling material confinement of about 100 kPa on the tunnel floor. In general, the results of the thermo-mechanical simulations were in accordance with the experimental data. The modeled temperature evolutions during the heating and cooling periods were also in accordance with the experimental and analytical data.
54

INVESTIGATION OF RECTANGULAR CONCRETE COLUMNS REINFORCED OR PRESTRESSED WITH FIBER REINFORCED POLYMER (FRP) BARS OR TENDONS

Choo, Ching Chiaw 01 January 2005 (has links)
Fiber reinforced polymer (FRP) composites have been increasingly used inconcrete construction. This research focused on the behavior of concrete columnsreinforced with FRP bars, or prestressed with FRP tendons. The methodology was basedthe ultimate strength approach where stress and strain compatibility conditions andmaterial constitutive laws were applied.Axial strength-moment (P-M) interaction relations of reinforced or prestressedconcrete columns with FRP, a linearly-elastic material, were examined. The analyticalresults identified the possibility of premature compression and/or brittle-tension failureoccurring in FRP reinforced and prestressed concrete columns where sudden andexplosive type failures were expected. These failures were related to the rupture of FRPrebars or tendons in compression and/or in tension prior to concrete reaching its ultimatestrain and strength. The study also concluded that brittle-tension failure was more likelyto occur due to the low ultimate tensile strain of FRP bars or tendons as compared to steel.In addition, the failures were more prevalent when long term effects such as creep andshrinkage of concrete, and creep rupture of FRP were considered. Barring FRP failure,concrete columns reinforced with FRP, in some instances, gained significant momentresistance. As expected the strength interaction of slender steel or FRP reinforcedconcrete columns were dependent more on column length rather than material differencesbetween steel and FRP.Current ACI minimum reinforcement ratio for steel (pmin) reinforced concretecolumns may not be adequate for use in FRP reinforced concrete columns. Design aidswere developed in this study to determine the minimum reinforcement ratio (pf,min)required for rectangular reinforced concrete columns by averting brittle-tension failure toa failure controlled by concrete crushing which in nature was a less catastrophic and moregradual type failure. The proposed method using pf,min enabled the analysis of FRPreinforced concrete columns to be carried out in a manner similar to steel reinforcedconcrete columns since similar provisions in ACI 318 were consistently used indeveloping these aids. The design aids produced accurate estimates of pf,min. Whencreep and shrinkage effects of concrete were considered, conservative pf,min values wereobtained in order to preserve an adequate margin of safety due to their unpredictability.
55

Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions

Bewick, Robert P. 07 January 2014 (has links)
The shear rupture of massive (intact non-jointed) brittle rock in underground high stress mines occurs under a variety of different boundary conditions ranging from constant stress (no resistance to deformation) to constant stiffness (resistance to deformation). While a variety of boundary conditions exist, the shear rupture of massive rock in the brittle field is typically studied under constant stress boundary conditions. According to the theory, the fracturing processes leading to shear rupture zone creation occur at or near peak strength with a shear rupture surface created in the post-peak region of the stress-strain curve. However, there is evidence suggesting that shear rupture zone creation can occur pre-peak. Limited studies of shear rupture in brittle rock indicate pre-peak shear rupture zone creation under constant stiffness boundary conditions. This suggests that the boundary condition influences the shear rupture zone creation characteristics. In this thesis, shear rupture zone creation in brittle rock is investigated in direct shear under constant normal stress and normal stiffness boundary conditions. It is hypothesized that the boundary condition under which a shear rupture zone is created influences its characteristics (i.e., shear rupture zone geometry, load-displacement response, shear rupture zone creation relative to the load-displacement curve, and peak and ultimate strengths). In other words, it is proposed that the characteristics of a shear rupture zone are not only a function of the rock or rock mass properties but the boundary conditions under which the rupture zone is created. The hypothesis is tested and proven through a series of simulations using a two dimensional particle based Distinct Element Method (DEM) and its embedded grain based method. The understanding gained from these simulations is then used in the analysis and re-interpretation of rupture zone creation in two mine pillars. This is completed to show the value and practical application of the improved understanding gained from the simulations. The re-interpretation of these case histories suggests that one pillar ruptured predominately under a constant stress boundary condition while the other ruptured under a boundary condition changing from stiffness to stress control.
56

Real-Time Reliable Prediction of Linear-Elastic Mode-I Stress Intensity Factors for Failure Analysis

Huynh, Dinh Bao Phuong, Peraire, Jaime, Patera, Anthony T., Liu, Guirong 01 1900 (has links)
Modern engineering analysis requires accurate, reliable and efficient evaluation of outputs of interest. These outputs are functions of "input" parameter that serve to describe a particular configuration of the system, typical input geometry, material properties, or boundary conditions and loads. In many cases, the input-output relationship is a functional of the field variable - which is the solution to an input-parametrized partial differential equations (PDE). The reduced-basis approximation, adopting off-line/on-line computational procedures, allows us to compute accurate and reliable functional outputs of PDEs with rigorous error estimations. The operation count for the on-line stage depends only on a small number N and the parametric complexity of the problem, which make the reduced-basis approximation especially suitable for complex analysis such as optimizations and designs. In this work we focus on the development of finite-element and reduced-basis methodology for the accurate, fast, and reliable prediction of the stress intensity factors or strain-energy release rate of a mode-I linear elastic fracture problem. With the use of off-line/on-line computational strategy, the stress intensity factor for a particular problem can be obtained in miliseconds. The method opens a new promising prospect: not only are the numerical results obtained only in miliseconds with great savings in computational time; the results are also reliable - thanks to the rigorous and sharp a posteriori error bounds. The practical uses of our prediction are presented through several example problems. / Singapore-MIT Alliance (SMA)
57

Um modelo constitutivo de dano composto para simular o comportamento de materiais quase-frágeis

Rodrigues, Eduardo Alexandre [UNESP] 21 March 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:28:35Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-03-21Bitstream added on 2014-06-13T20:37:41Z : No. of bitstreams: 1 rodrigues_ea_me_bauru.pdf: 1602991 bytes, checksum: 7f755b87b5be84900b2d054f02413197 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / No presente trabalho desenvolve-se um modelo constitutivo baseado na mecânica do dano contínuo para representar o comportamento de materiais que apresentam diferentes respostas quando solicitados à tração ou à compreensão. obtem-se uma representação constitutiva através da composição de modelos simples e específicos para tratar cada tipo de solicitação. Este modelo combinado é capaz inclusive de lidar com carregamentos alternados (tração e compreensão), envolvendo fechamento e reabertura de fissuras existentes. Para modelar o comportamento em compreensão emprega-se o modelo constitutivo que tem como critério de degradação o segundo invariante do tensor de tensão desviador (critério de Von Mises ou J2). Para simular o aparecimento de fissuras de tração, usa-se o modelo de dano com critério de degradação baseado na energia de deformação da parte positiva do tensor efetivas. A integração dos modelos é feita com base em tensões efetivas associadas a duas escalas distintas (escala grosseira e refinada). O modelo é apto para representar a formação de descontinuidades no campo de deslocamento (descontinuidades fortes) em materiais quase-frágeis. Nesse caso, a região de localização de deformação (zona de processo da fatura) pode ser descrita pelo modelo de dano combinado, com lei de abrandamento de tensões (softening) exponencial, que estabelece dissipação compatível com a energia de fratura. A região contínua pode ser descrita pelo modelo de dano J2, com parâmetros ajustados com base no comportamento não linear à compreensão. Valida-se o modelo proposto mediante testes básicos, focando a capacidade do modelo em representar os principais aspectos do comportamento de materiais quase-frágeis. A aplicabilidade do modelo é demonstrada através do estudo da capacidade de rotação plástica de vigas de concreto armado, confrontando-se os resultados numéricos com os experimentais / A combined constitutive model based on the Continuum Damage Mechanics (CDM) is presented to represent the nonlinear behavior of quasi-brittle materials, which present different response when subjected to tension or compreession. The constitutive model is a composition of two simple and specific models designed to treat each type of behavior. The combined model is able to deal with alternating load (tension-compression), involving formation, closure and reopening cracks. To model the compressive behavior, a degradation criterion based on the second invariant of the deviatoric part of the effective stress tensor (Von Miser or J2 criterion) is used. To simulate cracking, a damage model with degradation criterion based on the strain energy associated to the positive part the effective stress tensor is adopted. The combination of the models is made on the basis of the effective stresses associated to two distinct scales (coarse and fine scales) The model is able to represented the formation of discontinuities in the displacement field (strong discontinuities) for quasi-brittle materials. The region of strain localization (fracture process zone) is described by a softening law which establishes dissipation energy compatible with the fracture energy. The continuous region is described by the J2 damage model, with parameters ajusted to describle the compressive nonlinear behavior in compression. Some basic tests are performed to asses the ability of the model to represent the main aspects of the behavior of quasi-brittle materials. The applicability of the model is demonstrated by the study of the plastic rotation capacity of reinforced concrete beams, comparing the numerical responses with the experimental ones
58

Etude expérimentale et investigation numérique de la multi-fissuration des films minces déposés sur un substrat souple / Study of multi-cracking of brittle thin films and brittle/ductile multilayers on compliant substrate

Ben Cheikh, Ilhem 26 January 2018 (has links)
Les revêtements semi-conducteurs déposés sur des substrats souples sont utilisés dans différentes applications de haute technologie, par exemple pour la fabrication de composants micro-électroniques flexibles ou de cellules photovoltaïques flexibles. Sous un chargement de traction, ces revêtements subissent un endommagement caractérisé par l'apparition de multiples fissures sur leur surface avec ou sans délaminage à l'interface film/substrat. A la fin du processus de la multi-fissuration, une distance caractéristique entre les fissures peut être mesurée. Cette distance dépend principalement de l'épaisseur du film et du comportement mécanique du substrat.Dans ce projet, une étude expérimentale sur des monocouches d'oxyde et des multicouches d'oxyde et d'argent de différentes épaisseurs déposées sur deux substrats souples a été menée. Cette étude nous a permis de déterminer le comportement mécanique de chaque substrat, d'identifier les stades de la multi-fissuration des couches minces à savoir un premier stade d'apparition aléatoire de fissures, un deuxième stade de fissuration régulière et un dernier stade de saturation du réseau de fissures. L'influence de l'épaisseur de la couche d'argent a été également étudiée.Nous avons développé un modèle mécanique 2D basé utilisant des zones cohésives pour simuler l'amorçage et la propagation de fissures à travers le film. Ce modèle a permis de simuler numériquement les trois stades de la multi-fissuration des monocouches d?oxyde déposées sur polymère tels qu' observés expérimentalement. Nous avons ensuite réduit le modèle à une cellule représentative permettant de modéliser seulement les deux derniers stades de la multi fissuration. Cette cellule nous a permis d'identifier l'influence des propriétés géométriques et mécaniques des couches minces et de leur substrat sur la distance inter fissures à saturation. L'influence du délaminage interfacial a également été étudié. / Semiconductor coatings deposited on flexible substrates are used in various high-tech applications, for example flexible micro-electronic components or flexible sollar cells.When submitted to large tensile strains, these coatings undergo damage characterized by the appearance of multiple cracks on their surface with or without delamination at the film/substrate interface.At the end of the multi-cracking process, a characteristic distance between cracks can be measured.This distance depends mainly on the thickness of the film and the mechanical behavior of the substrate.In this project, an experimental study on oxide layers and oxide and silver multilayers of different thicknesses deposited on two polymer substrates was carried out.Were able to determine the mechanical behavior of each substrate and to identify the stages of the three stades of multi-cracking of thin layers.A first stade of random appearance of cracks, a second stade of regular cracking and a last stade of saturation of the network of cracks were identified.The influence of the thickness of the silver layer has also been studied.We have developed a 2D based mechanical model using cohesive zones to simulate the initiation and propagation of cracks in the film.Using this model, we successfully simulate the three stages of the multi-cracking of oxide monolayers deposited on polymer as observed experimentally.We then reduced the model to a representative cell allowing only the last two stages of multi-cracking to be modeled. This cell allowed us to identify the influence of the geometric and mechanical properties of the thin layers and their substrate on the distance between cracks to saturation.The influence of interfacial delamination has also been studied.
59

Efeito de escala no crescimento de trincas por fadiga em materiais quase-frágeis / Size effect on fatigue crack growth in quase-brittle materials

Cayro, Evandro Esteban Pandia January 2016 (has links)
No trabalho estuda-se o crescimento de trincas em carga monotônica e cíclica nos casos de materiais quase-frágeis, introduzindo uma lei de dano cíclico. Revisam-se conceitos sobre modelos coesivos, leis de carga-descarga, leis de evolução de dano e efeito de escala. É seguido o modelo coesivo irreversível proposto por Wang e Siegmund (2006). Em particular se dá ênfase aos efeitos de escala não estatísticos. O modelo de zona coesiva irreversível apresenta uma formulação de dano e considera carregamento em fadiga. Quando o tamanho estrutural é reduzido (ou as trinca se extendem), a fratura por fadiga não mais ocorre por propagação de trinca, mas sim por uma decoesão uniforme. O objetivo desde trabalho é implementar este modelo e verificar sua potencialidade na captura de efeitos de escala, comparando com experimentos e dados disponíveis na literatura. / At present work is intended to study crack growth in cyclic and monotonic loading in the case of quasi-brittle materials, introducing a damage mechanism, is reviewed concepts of cohesive models, loading-unloading laws, damage evolution laws and effect of scale. The irreversible cohesive zone model proposed by Wang e Siegmund (2006) is followed. In particular emphasizes in the not statistical size effects. The irreversible cohesive zone model, presents a damage formulation and considers fatigue loading. It is demonstrated in this study that, when the structure size is reduced (or extend cracks), the fatigue fracture no longer occurs by crack propagation, then occurs by uniform decohesion . The objetive of this work is implementing this model and verify its capability to capture the scale effect compared with experiments and data available in literature.
60

Efeito de escala no crescimento de trincas por fadiga em materiais quase-frágeis / Size effect on fatigue crack growth in quase-brittle materials

Cayro, Evandro Esteban Pandia January 2016 (has links)
No trabalho estuda-se o crescimento de trincas em carga monotônica e cíclica nos casos de materiais quase-frágeis, introduzindo uma lei de dano cíclico. Revisam-se conceitos sobre modelos coesivos, leis de carga-descarga, leis de evolução de dano e efeito de escala. É seguido o modelo coesivo irreversível proposto por Wang e Siegmund (2006). Em particular se dá ênfase aos efeitos de escala não estatísticos. O modelo de zona coesiva irreversível apresenta uma formulação de dano e considera carregamento em fadiga. Quando o tamanho estrutural é reduzido (ou as trinca se extendem), a fratura por fadiga não mais ocorre por propagação de trinca, mas sim por uma decoesão uniforme. O objetivo desde trabalho é implementar este modelo e verificar sua potencialidade na captura de efeitos de escala, comparando com experimentos e dados disponíveis na literatura. / At present work is intended to study crack growth in cyclic and monotonic loading in the case of quasi-brittle materials, introducing a damage mechanism, is reviewed concepts of cohesive models, loading-unloading laws, damage evolution laws and effect of scale. The irreversible cohesive zone model proposed by Wang e Siegmund (2006) is followed. In particular emphasizes in the not statistical size effects. The irreversible cohesive zone model, presents a damage formulation and considers fatigue loading. It is demonstrated in this study that, when the structure size is reduced (or extend cracks), the fatigue fracture no longer occurs by crack propagation, then occurs by uniform decohesion . The objetive of this work is implementing this model and verify its capability to capture the scale effect compared with experiments and data available in literature.

Page generated in 0.0274 seconds