• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxidative DNA Damage and DNA Binding Induced by 2, 2-Bis (Bromomethyl)-1, 3-Propanediol: Possible Mode of Action Implicated in its Carcinogenicity

Kong, Weixi January 2012 (has links)
The studies in this dissertation research were conducted to investigate the possible mode of action by which a brominated flame retardant, 2, 2-Bis (bromomethyl)-1, 3-propanediol (BMP) causes genotoxicity. Binding of BMP to DNA and BMP induced DNA strand breaks were investigated in SV-40 immortalized human uroepithelial cells (UROtsa) as an in vitro model for the bladder (a tissue that developed cancer after two year exposure to BMP in rodents). Results showed binding of [¹⁴C]-BMP equivalents to DNA increased with increased exposure time and concentration of [¹⁴C]-BMP. Comet analysis indicated BMP significantly increased the extent of DNA strand breaks at 1 and 3 h of incubation. However, strand breaks were repaired by 6 h of incubation. The DNA damaging effects of BMP at 1 h was concentration dependent. Compared with the parent compound, BMP-glucuronide (the predominant metabolite of BMP) bound less to DNA and produced less DNA strand breaks in UROtsa cells. Evidences that the BMP induced strand breaks were the result of an oxidative stress include: a concentration and time dependent increase in ROS generation; increased expression of Nrf2 and HSP70; complete attenuation of BMP induced DNA strand breaks by the antioxidant, NAC; and the presence of the oxidized base 8-OHguanine. UROtsa cells appear to be target cells for BMP because, as compared to rat hepatocytes (non-target cells), these cells lack the ability to detoxify BMP via glucuronidation and also because they are deficient in glutathione, a major intracellular antioxidant molecule. Both of these genotoxic events, DNA binding and oxidative DNA damage may, in part, contribute to BMP carcinogenicity observed in rodents. The relevance of current results to humans is remained to be established.
2

Anatomy and Function of the African Clawed Frog Vocal System is Altered by the Brominated Flame Retardant, PBDE-209

Ganser, Lisa Rania 18 May 2009 (has links)
Vocal communication allows animals to express distress, territoriality, and most important, to attract mates. In the African Clawed frog, Xenopus laevis, vocal communication is unique, because not only do males advertise for mates using elaborate click vocalizations, but also females are able to advertise their reproductive readiness by eliciting a "rapping" call. Sex differences in vocal repertoire match sex differences in vocal circuitry. During development, the vocal circuitry in the male grows increasingly sensitive to circulating androgens. Androgens induce tremendous growth in the cartilage and musculature of the peripheral vocal organ, the larynx. Net addition of synapses and motor fibers soon follow providing communication from the motor nucleus in the hindbrain to the vocal organ. The laryngeal motor nucleus, n. IX-X, accumulates androgens that serve to protect n. IX-X neurons from programmed apoptosis. Females, who have low levels of circulating androgens, experience a profound net loss on n. IX-X neurons during this developmental critical period. Once the frogs reach sexual maturity males possess larger and more numerous n. IX-X neurons than females, as well as sizable sex differences in laryngeal robustness and physiology. These measurable sex differences yield vastly different vocal programs. Androgens continue to maintain a critical role in governing breeding season trophic effects and mediating call production. Because male X. laevis are so susceptible to the effects of androgens, they may also be sensitive to the actions of endocrine disrupting chemical agents. The vocal system of X. laevis and its androgen sensitivity thus provide an ideal model for studying changes imposed to the anatomy and physiology of the system by the brominated flame retardant, PBDE-209, a putative anti-androgen and common pollutant. The present studies investigate how PBDE-209 affects the male vocal system when animals are exposed during the androgen-sensitive critical period of vocal system development and during adulthood when the tissues are utilizing androgens to vocalize. PBDE-209 effectively reduces male n. IX-X number and size at higher concentrations after exposure during the organizational critical period. Similar dose-dependent effects were observed in adult n. IX-X neurons. Moreover, PBDE-209 inhibited male-typical vocalization by reducing the number of calls elicited as well as the average call amplitude. These data strongly suggest that PBDE-209 has cytotoxic effects that alter n. IX-X anatomy and function, and may be mediated through pathways that include blocking the androgens necessary for proper vocal system development.
3

Inhibition of Androgen Receptor Activity by 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate in Prostate Cancer Cells

See, Mary Jean 04 October 2021 (has links)
No description available.
4

Polybrominated Diphenyl Ether (PBDE) Flame Retardants: Accumulation, Metabolism, and Disrupted Thyroid Regulation in Early and Adult Life Stages of Fish

Noyes, Pamela January 2013 (has links)
<p>Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardant chemicals that are added to plastics, electronic components, furniture foam, and textiles to reduce their combustibility. Of the three commercial mixtures historically marketed, only DecaBDE, which is constituted almost entirely (~97%) of the fully brominated congener decabromodiphenyl ether (BDE-209), continues to be used in the U.S. today. While decaBDE is scheduled for phase-out in the U.S. at the end of 2013, exposures to BDE-209 and other PBDEs will continue into the foreseeable future as products that contain them continue to be used, recycled, and discarded. In addition, decaBDE use continues to be largely unrestricted across Asia, although restricted from use in electronic equipment in Europe. </p><p>Despite limits placed on PBDE uses, they are ubiquitous contaminants detected worldwide in humans and wildlife. Major health effect concerns for PBDEs come largely from evidence in laboratory rodents demonstrating neurotoxicity, reproductive and developmental impairments, and thyroid disruption. The potential for PBDEs, particularly BDE-209, to disrupt thyroid regulation and elicit other toxic outcomes in fish is less clear. Thus, the overall objective of this thesis research was to answer questions concerning how fish, as important indicators of overall environmental health, are metabolizing PBDEs and whether and how PBDEs are disrupting thyroid hormone regulation. The central hypothesis was that PBDE metabolism in fish is mediated by iodothyronine deiodinase (dio) enzymes, which are responsible for activating and inactivating thyroid hormones, and that PBDE exposures are causing thyroid system dysfunction across fish life stages. </p><p>Under the first research aim, in vitro experiments conducted in liver tissues isolated from common carp (Cyprinus carpio) suggested a role for dio enzymes in catalyzing the reductive debromination of PBDEs. Carp liver microsomes efficiently debrominated BDE-99 to BDE-47, and enzymes catalyzing this reaction were associated predominantly with the endoplasmic reticulum (i.e., microsomal fraction) where dio enzymes are located. Competitive substrate experiments in carp liver microsomes also demonstrated that rates of BDE-99 debromination to BDE-47 were significantly inhibited upon challenges with 3,3',5'-triiodothyronine (rT3) and thyroxine (T4). This finding supported the hypothesis that enzymes involved in the metabolism of PBDEs may have high affinities for thyroid hormones. Indeed, experiments to determine apparent enzymatic kinetics (apparent Vmax and Km values) of BDE-99 hepatic metabolism suggested that enzymes responsible for the catalytic activity appeared to have a higher affinity for native thyroid hormone than BDE-99. </p><p>The second and third research aims were focused on evaluating BDE-209 accumulation, metabolism, and thyroid toxicity in juvenile and adult life stages of fish using the fathead minnow (Pimephales promelas) as a model. BDE-209 bioaccumulated and was debrominated to several reductive metabolites ranging from penta- to octaBDEs in both juvenile and adult fish exposed to BDE-209. In addition, thyroid hormone regulation in juvenile and adult male fathead minnows was severely disrupted by BDE-209 at low, environmentally relevant exposures. In juvenile minnows, the activity of dio enzymes (T4-outer ring deiodination; T4-ORD and T4-inner ring deiodination; T4-IRD) declined by ~74% upon oral doses of 9.8 ± 0.2 µg/g wet weight (ww) food at 3% body weight (bw)/day for 28 days, compared to controls. Declines in dio activity were accompanied by thyroid follicle hypertrophy indicative of over-stimulation and injury. In addition to thyroid disruption, a distinctive liver phenotype characterized by vacuolated hepatocyte nuclei was measured in ~48% of hepatocytes from treated fish that was not observed in controls. </p><p>Under the third research aim, adult male fathead minnows received dietary treatments of BDE-209 at a low dose (95.3 ± 0.41 ng/g-food at 3% bw/day) and a high dose (10.1 ± 0.10 µg/g-food at 3% bw/day) for 28 days followed by a 14-day depuration period to evaluate recovery. Compared to negative controls, adult male fish exposed orally to BDE-209 at the low dose tested for 28 days experienced a 53% and 46% decline in circulating total T4 and T3, respectively, while fish at the high BDE-209 dose tested had total T4 and T3 deficits of 59% and 62%, respectively. Depressed levels of plasma thyroid hormones were accompanied by a 45-50% decline in the rate of T4-ORD in brains of all treatments by day 14 of the exposure. The decreased T4-ORD continued in the brain at day 28 with a ~65% decline measured at both BDE-209 doses. BDE-209 exposures also caused transient, tissue-specific upregulations of relative mRNA transcripts encoding dio enzymes (dio1, dio2), thyroid hormone receptors (TR&alpha, TR&beta), and thyroid hormone transporters (MCT8, OATP1c1) in the brain and liver in patterns that varied with time and dose, possibly as a compensatory response to hypothyroidism. In addition, thyroid perturbations at the low dose tested generally were equal to those measured at the high dose tested, suggesting non-linear relationships between PBDE exposures and thyroid dysfunction in adult fish. Thus, mechanisms for BDE-209 induced disruption of thyroid regulation can be proposed in adult male minnows that involve altered patterns of thyroid hormone signaling at several important steps in their transport and activation. </p><p>A growing body of evidence describing PBDE toxicity in biota, including data generated here, along with studies showing continued and rising PBDE body burdens, raises concern for human and wildlife health. Long delays in removing PBDEs from the market, their ongoing presence in many products still in use, and their active use outside the U.S. and European Union will leave a lasting legacy of rising contamination unless more concerted regulatory and policy actions are taken to reduce future exposures and harm.</p> / Dissertation
5

Environmental occurrence and behaviour of the flame retardant decabromodiphenyl ethane

Ricklund, Niklas January 2010 (has links)
The environmental occurrence and behaviour of the brominated flame retardant (BFR) decabromodiphenyl ethane (dbdpe) has only been studied to a limited extent. It is structurally similar to decabromodiphenyl ether (decaBDE), which makes it conceivable that dbdpe may also become an environmental contaminant of concern. A method for environmental analysis and comparative assessments of dbdpe and decaBDE was developed. Both BFRs were studied in: a mass balance of the Henriksdal WWTP in Stockholm (Paper I); an international survey of sewage sludge (Paper II); sediment along a transect from Henriksdal WWTP to the outer archipelago of Stockholm and from isolated Swedish lakes (Paper III); and a benthic food web from the Scheldt estuary (Paper IV). Dbdpe was found in sludge from every country surveyed, indicating that it may be a worldwide concern. The WWTP mass balance showed that virtually all of the BFRs were transferred from wastewater to sludge. A small fraction was emitted via the effluent, confirming emissions to the aquatic environment. In the marine sediment, the BFR levels close to the WWTP outfall were high. They decreased along the transect to low levels in the outer archipelago. The study of lake sediment showed a widespread presence of dbdpe in the Swedish environment and provided evidence that it originates from long range atmospheric transport. In the food web, dbdpe did bioaccumulate to a small extent which was similar to decaBDE. The transfer of the BFRs from sediment to benthic invertebrates was low, while transfer from prey to predator was higher. Biodilution was observed rather than biomagnification. This work suggests that the persistence, the susceptibility to long range atmospheric transport, and the potential for bioaccumulation are similar for dbdpe and the regulated decaBDE that it is replacing. Thus, there is a risk that a problematic environmental pollutant is being replaced with a chemical that is equally problematic. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Manuscript.
6

Substance flow analysis of brominated flame retardants in vehicles / 自動車由来の臭素系難燃剤の物質フロ-分析

Liu, Heping 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23183号 / 工博第4827号 / 新制||工||1754(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 酒井 伸一, 教授 田中 宏明, 准教授 平井 康宏 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
7

Proximity to Potential Sources and Mountain Cold-trapping of Semi-volatile Organic Contaminants

Westgate, John Norman 13 August 2013 (has links)
If sufficiently persistent, semi-volatile organic contaminants (SVOCs) can travel long distances through the atmosphere from their points of release and become concentrated in cold, remote regions. As air is sampled for SVOCs to establish both their presence and the success of emission reduction efforts, it becomes helpful to determine sampling site proximity to sources and the origin of the sampled air masses. Comparing three increasingly sophisticated methods for quantifying source proximity of sampling locations, it was judged necessary to account for the actual history of the sampled air through construction of an airshed, especially if wind is highly directional and population distribution is very non-uniform. The airshed concept was improved upon by introducing a ‘geodesic’ grid of equally spaced cells, rather than a simple latitude/longitude grid, to avoid distortion near Earth’s poles and to allow for the comparison of airshed shapes. Assuming that a perfectly round airshed reveals no information about sources allows the significance of each cell of an airshed to be judged based on its departure from roundness. Combining air-mass histories with a 2 year-long series of SVOC air concentrations at Little Fox Lake in Canada’s Yukon Territory did not identify distinct source regions for most analytes, although γ-hexachlorocyclohexane appears to originate broadly in north-eastern Russia and/or Alaska. Based on this remoteness from sources, the site is judged to be well suited to monitor changes in the hemispheric background concentrations of SVOCs. A model-based exploration revealed wet-gaseous deposition as the dominant process responsible for cold-trapping SVOCs in mountain soils. Such cold trapping is particularly effective if precipitation rate increases with altitude and if temperature differences along the mountain are large. Considerable sensitivity of the modeled extent of cold-trapping to parameters as diverse as scale, mean temperature, atmospheric particle concentration and time relative to emission maxima is consistent with the wide variety of observed enrichment behaviour. Concentration gradients of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in air and soil measured on four Western Canadian mountains with variable distance from sources revealed source proximity as the main driver of concentrations at both the whole-mountain scale and along individual mountain transects.
8

Proximity to Potential Sources and Mountain Cold-trapping of Semi-volatile Organic Contaminants

Westgate, John Norman 13 August 2013 (has links)
If sufficiently persistent, semi-volatile organic contaminants (SVOCs) can travel long distances through the atmosphere from their points of release and become concentrated in cold, remote regions. As air is sampled for SVOCs to establish both their presence and the success of emission reduction efforts, it becomes helpful to determine sampling site proximity to sources and the origin of the sampled air masses. Comparing three increasingly sophisticated methods for quantifying source proximity of sampling locations, it was judged necessary to account for the actual history of the sampled air through construction of an airshed, especially if wind is highly directional and population distribution is very non-uniform. The airshed concept was improved upon by introducing a ‘geodesic’ grid of equally spaced cells, rather than a simple latitude/longitude grid, to avoid distortion near Earth’s poles and to allow for the comparison of airshed shapes. Assuming that a perfectly round airshed reveals no information about sources allows the significance of each cell of an airshed to be judged based on its departure from roundness. Combining air-mass histories with a 2 year-long series of SVOC air concentrations at Little Fox Lake in Canada’s Yukon Territory did not identify distinct source regions for most analytes, although γ-hexachlorocyclohexane appears to originate broadly in north-eastern Russia and/or Alaska. Based on this remoteness from sources, the site is judged to be well suited to monitor changes in the hemispheric background concentrations of SVOCs. A model-based exploration revealed wet-gaseous deposition as the dominant process responsible for cold-trapping SVOCs in mountain soils. Such cold trapping is particularly effective if precipitation rate increases with altitude and if temperature differences along the mountain are large. Considerable sensitivity of the modeled extent of cold-trapping to parameters as diverse as scale, mean temperature, atmospheric particle concentration and time relative to emission maxima is consistent with the wide variety of observed enrichment behaviour. Concentration gradients of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in air and soil measured on four Western Canadian mountains with variable distance from sources revealed source proximity as the main driver of concentrations at both the whole-mountain scale and along individual mountain transects.

Page generated in 0.0833 seconds