• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 27
  • 22
  • 7
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 209
  • 192
  • 37
  • 35
  • 25
  • 24
  • 23
  • 19
  • 18
  • 18
  • 18
  • 17
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Investigation of small molecules binding to UDP-galactose 4'-epimerase : - A validated drug target for <em>Trypanosoma brucei</em>, the parasite responsible for African Sleeping Sickness.

Jinnelöv, Anders January 2009 (has links)
No description available.
162

The Trypanosome Lytic Factor of Human Serum: a Trojan Horse

Vanhollebeke, Benoit 01 December 2008 (has links)
THE TRYPANOLYTIC FACTOR OF HUMAN SERUM: A TROJAN HORSE African trypanosomes, the prototype of which is Trypanosoma brucei, are protozoan parasites of huge clinical, veterinary and economical importance. They develop in the body fluids of various mammals (including humans) where they face and manipulate many different aspects of the immune system. The extent of this interplay is pivotal to both host and parasite survival, and depending on parasite virulence and host susceptibility, infection duration ranges from some months to several years. At the end, host survival is invariably compromised. Humans and few other primates provide however a striking exception to this fatal outcome. They are indeed fully protected against most trypanosome infections through the presence in their blood of a so-called trypanosome lytic factor (TLF). The TLF is known to circulate mainly in the form of a high density lipoprotein particle characterized by the simultaneous presence of two primate-specific proteins: haptoglobin-related protein (Hpr) and apolipoprotein L-I (apoL-I). We have contributed to delineate the respective roles played by Hpr and apoL-I in the lysis process. ApoL-I was shown to be the exclusive toxin of the TLF. In its absence humans get fully susceptible to any trypanosome infection. The toxin was shown to kill the parasite after endocytosis through the generation of ionic pores in the lysosomal membrane. Those pores dissipate membrane potential and trigger the influx of chloride ions from the cytoplasm into the lysosomal compartment, leading to an eventually fatal uncontrolled osmotic phenomenon. ApoL-I efficient delivery to the parasite relies on Hpr. African trypanosomes indeed fulfil their heme nutritional requirements by receptor-mediated internalization of the complex formed by haptoglobin, an evolutionary conserved acute-phase protein, and hemoglobin, resulting from physiological intravascular hemolysis. This heme uptake by the auxotrophic parasites contributes to both growth rate and resistance against host oxidative burst. In human serum, the trypanosome receptor is unable to discriminate between Hp and the closely related TLF-bound Hpr, explaining TLF efficient endocytosis. As such, the TLF acts as a Trojan horse, killing the parasite from inside the cell after having deceived its vigilance through the high similarity between heme-delivering haptoglobin and toxin-associated Hpr.
163

Investigation of small molecules binding to UDP-galactose 4'-epimerase : A validated drug target for Trypanosoma brucei, the parasite responsible for African Sleeping Sickness.

Jinnelöv, Anders January 2009 (has links)
African sleeping sickness is a parasitic infection spread by the protozoan parasite Trypanosoma brucei, and drugs used today are toxic and painful. Galactose metabolism is essential for the survival of T. brucei and without a functional UDP galactose 4’ epimerase (GalE) galactose starvation occurs and cell death will follow. In this Master thesis project two assays observing binding of small molecules to TbGalE has been investigated in attempt to establish an assay that in the future could be used for screening for drugs. TbGalE was biotinylated through the Pinpoint Xa vector and expressed in E. coli cells. The protein was successfully immobilized to a Streptavidin chip for Surface Plasmon Resonance experiments and the binding of the substrates UDP-galactose and UDP-glucose was observed. Unfortunately, the assay was not optimal for screening due to low signal response. However, the established protocol for expressing biotinylated proteins that bind to Streptavidin surfaces could be used in further experiments with TbGalE and other drug targets for African sleeping sickness. The fluorescent sugar nucleotide analogue UDPAmNS, which is a known inhibitor for E. coli GalE, was synthesised and purified and then used to establish a displacement assay. IC50 of UDPAmNS against TbGalE was determined and a synergic effect in fluorescence between the protein and the inhibitor was proven. Further, evidence for a reduction in fluorescence by displacing UDPAmNS with UDP was obtained. This reduction in fluorescence was also shown by a predicted cofactor inhibitor. The IC50 against TbGalE for this compound was determined before the displacement assay, which showed that the cofactor inhibitor, at least partly, binds to the active site of TbGalE. The UDPAmNS displacement assay could have the potential of becoming a robust screening assay for TbGalE, in the effort to find a better drug for African sleeping sickness.
164

Régulations génétique et moléculaire par ARN interférence chez Trypanosoma brucei

Durand-Dubief, Mickaël 07 March 2005 (has links) (PDF)
L'ARN interférence (ARNi) est un phénomène découvert en 1998 par lequel la présence d'ARN double brin au sein d'une cellule entraîne la dégradation d'ARN de séquence homologue. L'ARNi est effectué par un complexe ribonucléoprotéique contenant des petits ARN double brin et au moins une protéine de la famille Argonaute. Cette thèse a été consacrée à l'étude de l'ARNi chez le protozoaire Trypanosoma brucei. Nous avons d'abord défini les conditions d'utilisation de l'ARNi au niveau de la spécificité et de l'efficacité, paramètres qui ont servi à l'élaboration d'un logiciel permettant la sélection de l'ARN double brin pour les études fonctionnelles. Ensuite, nous avons recherché plusieurs gènes candidats codant pour des protéines participant à l'ARNi. Le meilleur d'entre eux, TbAGO1, appartient à la famille Argonaute et se caractérise par la présence d'un domaine supplémentaire, capable de lier les ARN. Il est essentiel pour l'ARNi chez le trypanosome. Sa délétion produit des défauts significatifs lors de la mitose et nous avons établi que l'ARNi contribue à la formation du fuseau mitotique et à la ségrégation des chromosomes. Un second phénotype observé en l'absence d'ARNi est la surexpression des ARN de deux types de rétroposons (rétrotransposons sans LTR), sans toutefois augmentation de leur activité de rétroposition. Les deux phénotypes sont indépendants l'un de l'autre. Nous avons ensuite démontré que la présence d'ARN double brin entraîne la destruction d'ARN cible de séquence homologue dans le cytoplasme mais peut aussi conduire à une extinction de la transcription du gène correspondant. Ce type de mécanisme pourrait non seulement contrôler l'expression des ARN des rétroposons, mais aussi celle des gènes dans lesquels ils sont insérés.
165

Fluorescence-based reporter substrate for monitoring RNA editing in Trypanosomatid pathogens

Moshiri, Houta. January 2008 (has links)
Mitochondrial gene expression in trypanosomatid pathogens requires extensive post transcriptional modification called RNA editing. This unique molecular mechanism, catalyzed by a multiprotein complex (the editosome), generates translatable transcripts for essential components of parasite respiratory complex. How editosome proteins are assembled and perform RNA editing is not fully understood. Moreover, previous studies have shown that editosome proteins are essential for parasite survival, which makes editosome as a suitable target for drug discovery. Currently, researchers use radio-labeled based assays to monitor RNA editing process. However, these assays are not suitable for high throughput screening of editosome inhibitors, have low detection limits, and cannot monitor RNA editing in real time. / Therefore, to develop a sensitive high throughput RNA editing assay, we have designed a sensitive hammerhead ribozyme-based fluorescence assay. Ribozyme structure was remodeled by adding or removing uridylate in its conserved catalytic core to make an inactive ribozyme. In the presence of the editosome, inactive ribozyme is edited to an active ribozyme. Consequently, hammerhead ribozyme activity can be measured by cleaving its fluorescently labeled substrate. We have shown that higher sensitivity is achieved using fluorescent based assay than conventional radio-labeled assay. Moreover, we can use this assay for rapid identification and characterization of the editosome inhibitors against RNA editing activities in trypanosomatids.
166

Trypanopain : a possible target for anti-trypanosomal agents?

Troeberg, Linda. January 1997 (has links)
The protozoan parasite Trypanosoma brucei brucei causes nagana in cattle and is a widely used model for human sleeping sickness. The major lysosomal cysteine proteinases (trypanopains) of African trypanosomes may contribute to pathogenesis by degrading proteins in the mammalian bloodstream and also appear to be essential for the viability of T. cruzi and T. congolense. This study describes the first purification to electrophoretic homogeneity of trypanopain-Tb from T. b. brucei and the first reported characterisation of its enzymatic properties. Trypanopain-Tb was purified from bloodstream forms of T. b. brucei by a combination of three phase partitioning (between ammonium sulfate and tertiary butanol), and chromatography on quaternary amine or pepstatin A-Sepharose resins. Trypanopain-Tb was found to be a typical cysteine proteinase, in that it is inhibited by typical cysteine proteinase inhibitors and requires reducing agents for full activity. Trypanopain has cathepsin L-like specificity for synthetic substrates and readily degrades various proteins. In vitro analysis of the kinetics of trypanopain interaction with cystatins suggested that these are likely to inhibit any trypanopain released into the mammalian bloodstream. Furthermore, no trypanopain-like activity was detectable in the blood of infected hosts, so it appears that trypanopain is unlikely to contribute directly to pathogenesis by degrading bloodstream host proteins. Antibodies against a peptide corresponding to a region of the trypanopain active site were produced in rabbits and chickens. Both enzyme activity-enhancing and enzyme activity inhibiting antibodies were produced and these effects varied with the substrate tested. Thus, the in vivo effects of anti-trypanopain antibodies will only become clearly understood once the physiological substrates of trypanopain have been identified. Various cysteine proteinase inhibitors, including peptidyl diazomethylketones, killed cultured bloodstream forms of T. b. brucei. Use of biotinylated derivatives of peptidyl diazomethylketone and fluoromethylketone inhibitors suggested that trypanopain is the likely intracellular target of these inhibitors, indicating that the enzyme is essential for parasite viability. Furthermore, chalcones (a class of reversible cysteine proteinase inhibitors) killed in vitro cultured parasites and also prolonged the life of T. b. brucei-infected mice. Thus, trypanopain-Tb seems to be a possible target for new anti-trypanosomal drugs. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1997.
167

P15 trypanosome microtubule associated protein : structure/function analysis and vaccine development for the prevention of African sleeping sickness.

Rasooly, Reuven. January 2001 (has links)
Trypanosomes are hemoflagellated protozoan parasites causing chagas disease in South America, Leishmaniasis throughout the world, and African sleeping sickness in humans and nagana in animals in Africa. About 55 million people and 25 million cattle have been estimated to be at risk of contracting African sleeping sickness or nagana respectively. Once injected into the blood stream via the bite of a tsetse fly, the parasite evades the host's immune response by repeatedly changing its surface antigens, thus making the development of a vaccine seem impossible. Furthermore, chemotherapy existing today can be toxic, suggesting that novel methods to prevent diseases caused by trypanosomes are essential. All parasites of the Trypanosomatidae family contain unique microtubular structures called the subpellicular microtubules. Microtubules are made of tubulin and of microtubule associated proteins (MAPs). Unlike other microtubules, the subpellicular microtubules are crosslinked to one another and to the plasma membrane. The unique structure of the subpellicular microtubules has been attributed to unique trypanosome subpellicular MAPs which stabilize the microtubule polymers and crosslink them to one another. Three unique types of subpellicular MAPs have been identified: MARP, which is a high molecular mass MAP that stabilizes microtubules, p52 that is a 52kDa MAP which crosslinks microtubules, and pI5, which is a I5kDa protein which bundles microtubules. Because trypanosome MAPs have been shown to be unique to these parasites, these molecules could serve as useful target sites for therapy. In this study pI5 was cloned and sequenced and shown to contain highly organized, nearly identical tandem repeats with a periodicity of 10 amino acids, rich in positively charged and in hydrophobic amino acids. It was shown that pI5 can also bind phospholipids, suggesting that it may not only bundle the microtubule polymer through its positively charged amino acids but may also crosslink the microtubules to the plasma membrane through its hydrophobic regions, thus contributing to the stable structure of the subpellicular microtubules. To test for the efficiency of pI5 as a vaccine candidate, the recombinant pI5 was cloned into an adenovirus, which was used as a vaccine delivery system for pI5. Mice were vaccinated with the native purified pI5, with the expressed recombinant pI5 and with the adenovirus containing the recombinant pI5 gene (Ad-pI5). The results indicated that pI5 protected 100% of the animals vaccinated with the recombinant molecule (8/8), and 87% of the animals vaccinated with the native protein (7/S), while none of the control animals were protected. Animals that were vaccinated with the Ad-pI5 were protected but so were the control animals vaccinated with an adenovirus containing the lacZ gene. We have shown that vaccination with the adenovirus is associated with an elevated CDS+ T cell response which is known to be trypanostatic (S6), suggesting that animals vaccinated with Ad-pIS may have been protected not only by the specific anti-plS response but also by non specific immunity that was induced by the adenovirus itself. The source of the native and recombinant pI5 was from a different strain of T. brucei that was used for challenge. Since the subpellicular microtubules are common to all members of the Trypanosomatidae family, pI5 may ultimately serve as a common target for therapy to all types of diseases caused by trypanosomes. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 2001.
168

Epitope mapping of a trypanosomal cysteine proteinase.

Mkhize, Pamela Phumelele. 28 November 2013 (has links)
Trypanosomosis is a parasitic disease in man, domestic and wild animals and is of major economic importance in many parts of the world, particularly in Sub-Saharan Africa. Trypanosoma congolense, T vivax and T brucei brucei are the major pathogenic trypanosomes infecting cattle in sub-Saharan Africa. The parasite itself is not directly responsible for the disease, but rather causes illness through the release of pathogenic factors. One of the major pathogenic factors released by trypanosomes is proteinases. Trypanotolerant cattle produce antibodies against a trypanosomal proteinase, congopain, that inhibit congopain activity. Congopain thus has vaccine potential. This study describes the mapping of immunogenic epitopes of congopain to identify peptide regions of the protein that induce enzyme inhibitory antibodies for inclusion in a trypanosome vaccine. This vaccine approach targets the disease, rather than the parasite by focusing on a pathogenic factor. These peptides also have potential for use in diagnostic assays. Peptides from the catalytic domain of a trypanosomal cysteine proteinase, congopain, were selected using an epitope prediction program. Peptides selected were from the two forms of congopain called CP1 and CP2. Antibodies against peptide-carrier conjugates were produced in chickens. The antibodies recognised native congopain, recombinant CP2 and the recombinant catalytic domain (C2). This suggests that the peptides selected have promise for use in vaccines. The peptides were also used to determine whether they are natural immunogenic epitopes of CP2 and thus have potential for use in diagnostic assays. Antibodies in the sera from T. congolense infected cattle recognised all the peptides in an ELISA. Antibodies in the sera from C2-immunised, non-infected cattle recognised most of the peptides in an ELISA. In order to distinguish between T. congolense and T vivax infection, two different peptides from the C-terminal extensions of CP2 and vivapain were used in ELISA tests with sera from infected cattle. Although anti-peptide antibodies produced against the two C-terminal extension peptides were specific for their respective peptides, thereby indicating the discriminatory power of the peptides selected, there was cross-reactivity by the sera from T. congolense and T. vivax infected cattle. Optimal antibody binding peptide sequences of these two peptides need to be identified by testing modified sequences of these two peptides to improve the sensitivity of this assay. In addition to attempting to define the epitopes of congopain, preliminary studies to increase the immunogenicity of congopain were also undertaken. Alpha 2-macroglobulin is a natural host inhibitor of proteinases. Inhibition occurs by entrapment of an active proteinase within the alpha 2-macroglobulin cage. In addition, it has been demonstrated that antigen complexed with alpha 2-macroglobulin becomes more immunogenic, resulting in enhanced antigenic presentation of an entrapped antigen. This study reports the interaction between congopain and alpha 2-macroglobulin. The preliminary results of this study showing congopain-alpha 2-macroglobulin interaction could be used to explore the possibility of increasing the immunogenicity of congopain and congopain epitopes by complexing these to alpha 2-macroglobulin. Congopain epitopes complexed with alpha 2-macroglobulin could be used to form a peptide-based vaccine. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2003.
169

Protein discovery in African Trypanosomes: studying differential protein expression throughout the parasite life cycle and identification of candidate biomarkers for diagnosing Trypanosome infections

Eyford, Brett Alexander 22 February 2013 (has links)
Research was undertaken to discover and study trypanosome proteins that may play important roles in host-parasite or vector-parasite interactions. The methods used mass spectrometry based proteomics ideally suited for analysis of low abundance molecules. First, isobaric tags were used to monitor changes in proteins expression throughout the life cycle of Trypanosoma congolense, an economically important livestock pathogen. This was the first large scale survey of protein expression in trypanosomes. In addition to generating protein expression data for approximately 2000 different parasite proteins, 6 previously undescribed T. congolense proteins were discovered. Several of the proteins with interesting expression trends were selected for molecular characterization and monoclonal antibody derivation. Second, immunoenrichment and mass spectrometry were used to identify the cognate antigen recognized by a T. congolense-specific monoclonal antibody. The antigen, a flagellar calcium binding protein, was expressed as a recombinant protein and used to test its utility as a potential serodiagnostic antigen for diagnosis of T. congolense infections. Third, a “deep-mining” protein discovery mass spectrometric method was used to identify trypanosome proteins present in the plasma of late-stage African sleeping sickness patients. A total of 254 trypanosome proteins were unequivocally identified by tandem mass spectrometry. These findings are unprecedented since never before have such a large number of pathogen proteins been discovered in human blood using a non-biased approach (i.e. without using a targeted assay). The proteins discovered provide insights into host-parasite interactions and are strong candidates as targets for new diagnostic assays. / Graduate
170

Kinetoplastids biology, from the group phylogeny and evolution into the secrets of the mitochondrion of one representative: \kur{Trypanosoma brucei}, the model organism in which new roles of the evolutionary conserved genes can be explored / Kinetoplastids biology, from the group phylogeny and evolution into the secrets of the mitochondrion of one representative: \kur{Trypanosoma brucei}, the model organism in which new roles of the evolutionary conserved genes can be explored

TÝČ, Jiří January 2015 (has links)
This thesis is composed of two topics, for which trypanosomatids and evolution are common denominators. First part deals with phylogenetic relationships among monoxenous trypanosomatids, with emphasis on flagellates parasitizing dipteran hosts, analyzed mainly from biogeographical and evolutionary perspectives. Second part focuses on the trypanosomatid Trypanosoma brucei, causative agent of severe diseases, which serves as a model organism for functional studies of evolutionary conserved mitochondrial proteins, in particular those involved in replication, maintenance and expression of the mitochondrial genome, also termed the kinetoplast. This thesis identified the mtHsp70/mtHsp40 chaperone machinery as an essential component of replication and maintenance of the kinetoplast, and also identified numerous conditions under which mtHsp70 has a tendency to aggregate. Moreover, several conserved proteins, previously identified to be part of the mitochondrial ribosome, were shown to be important for translation of the mitochondrial transcripts.

Page generated in 0.059 seconds