• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 7
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 63
  • 63
  • 15
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental investigation into the correlation between Acoustic Emission (AE) and bubble dynamics

Husin, Shuib 08 1900 (has links)
Bubble and cavitation effects phenomena can be encountered in two-phase gas-liquid systems in industry. In certain industries, particularly high-risk systems such as a nuclear reactor/plant, the detection of bubble dynamics, and the monitoring and measurement of their characteristics are necessary in controlling temperature. While in the petro-chemical engineering industry, such as oil transportation pipelines, the detection and monitoring of bubbles/cavitation phenomena are necessary to minimise surface erosion in fluid carrying components or downstream facilities. The high sensitivity of Acoustic Emission (AE) technology is feasible for the detection and monitoring of bubble phenomena in a two phase gas-liquid system and is practical for application within the industry. Underwater measurement of bubble oscillations has been widely studied using hydrophones and employing acoustic techniques in the audible range. However, the application of Acoustic Emission (AE) technology to monitor bubble size has hitherto not been attempted. This thesis presents an experimental investigation aimed at exploring AEs from gas bubble formation, motion and destruction. AE in this particular investigation covers the frequency range of between 100 kHz to 1000 kHz. The AE waveform analysis showed that the AE parameter from single bubble inception and burst events, i.e. AE amplitude, AE duration and AE energy, increased with the increase of bubble size and liquid viscosity. This finding significantly extends the potential use of AE technology for detecting the presence of bubbles in two-phase flow. It is concluded that bubble activity can be detected and monitored by AE technology both intrusively and non-intrusively. Furthermore, the bubble size can be determined by measurement of the AE and this forms the significant contribution of this thesis.
2

An experimental investigation into the correlation between Acoustic Emission (AE) and bubble dynamics

Husin, Shuib January 2011 (has links)
Bubble and cavitation effects phenomena can be encountered in two-phase gas-liquid systems in industry. In certain industries, particularly high-risk systems such as a nuclear reactor/plant, the detection of bubble dynamics, and the monitoring and measurement of their characteristics are necessary in controlling temperature. While in the petro-chemical engineering industry, such as oil transportation pipelines, the detection and monitoring of bubbles/cavitation phenomena are necessary to minimise surface erosion in fluid carrying components or downstream facilities. The high sensitivity of Acoustic Emission (AE) technology is feasible for the detection and monitoring of bubble phenomena in a two phase gas-liquid system and is practical for application within the industry. Underwater measurement of bubble oscillations has been widely studied using hydrophones and employing acoustic techniques in the audible range. However, the application of Acoustic Emission (AE) technology to monitor bubble size has hitherto not been attempted. This thesis presents an experimental investigation aimed at exploring AEs from gas bubble formation, motion and destruction. AE in this particular investigation covers the frequency range of between 100 kHz to 1000 kHz. The AE waveform analysis showed that the AE parameter from single bubble inception and burst events, i.e. AE amplitude, AE duration and AE energy, increased with the increase of bubble size and liquid viscosity. This finding significantly extends the potential use of AE technology for detecting the presence of bubbles in two-phase flow. It is concluded that bubble activity can be detected and monitored by AE technology both intrusively and non-intrusively. Furthermore, the bubble size can be determined by measurement of the AE and this forms the significant contribution of this thesis.
3

Semi-infinite and finite bubble propagation in the presence of a channel-depth perturbation

Franco Gomez, Andres January 2018 (has links)
The two-phase flow displacement of a viscous fluid by a less viscous one in a confined environment leads to a viscous fingering instability commonly encountered in natural systems, for example, in flows through porous media or pulmonary airways. The classical study of viscous fingering has been conducted in rectangular channels of high aspect ratio (large channel width/height), known as Hele-Shaw channels where a unique, steady symmetric, semi-infinite bubble (finger) emerges. In this Journal Format thesis, the propagation of semi-infinite (open) and finite (closed) air bubbles is considered in Hele-Shaw channels where thin, axially-uniform occlusions are introduced. This configuration is known to generate symmetric, asymmetric and oscillatory modes with complex interactions and rich behaviour. Numerical results of finger propagation using a depth-averaged model in these constricted channels are found to be in quantitative agreement with experimental results once the aspect ratio reaches a value of $\alpha\geq40$ and capillary numbers below $Ca\leq 0.012$. The same evolution of the bifurcation scenario between multiple modes is found, however, it occurs for decreasing values of occlusion height as the value of aspect ratio is increased that the system exhibits sensitivity to small but finite depth-variations. The numerical simulations reveal multiple-tipped unstable symmetric solutions which interact with the single symmetric mode at vanishing occlusion heights resulting in stabilisation of the asymmetric and oscillatory modes. Moreover, deviations from the single symmetric mode are predicted when depth-variations of order of the roughness of the channel walls ($\sim 1$ $\mu$m) are introduced for larger aspect ratios of $\alpha\geq 155$. The propagation of finite bubbles is studied in a channel with constant aspect ratio of $\alpha=30$ and where the height of the occlusion, termed rail, is $1/40$ of the channel height. For bubble diameters of the order of the rail width, a tongue-shaped stability boundary for symmetric (on-rail) propagation is encountered so that for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail while bubbles of other sizes segregate to the side of the rail. The numerical depth-averaged model is adapted for bubble propagation and captures in qualitative agreement the experimental observations. Time-dependent calculations are additionally performed, showing that on-rail bubble propagation is the result of a non-trivial dynamical interaction between capillary and viscous forces.
4

Bubble Simulation Using Level Set-Boundary Element Method

Tan, Kiok Lim, Khoo, Boo Cheong, White, Jacob K. 01 1900 (has links)
In bubble dynamics, an underwater bubble may evolve from being singly-connected to being toroidal. Furthermore, two or more individual bubbles may merge to form a single large bubble. These dynamics involve significant topological changes such as merging and breaking, which may not be handled well by front-tracking boundary element methods. In the level set method, topological changes are handled naturally through a higher-dimensional level set function. This makes it an attractive method for bubble simulation. In this paper, we present a method that combines the level set method and the boundary element method for the simulation of bubble dynamics. We propose a formulation for the update of a potential function in the level set context. This potential function is non-physical off the bubble surface but consistent with the physics on the bubble surface. We consider only axisymmetric cavitation bubbles in this paper. Included in the paper are some preliminary results and findings. / Singapore-MIT Alliance (SMA)
5

Model Order Reduction for Determining Bubble Parameters to Attain a Desired Fluid Surface Shape

My-Ha, D., Lim, K. M., Khoo, Boo Cheong, Willcox, Karen E. 01 1900 (has links)
In this paper, a new methodology for predicting fluid free surface shape using Model Order Reduction (MOR) is presented. Proper Orthogonal Decomposition combined with a linear interpolation procedure for its coefficient is applied to a problem involving bubble dynamics near to a free surface. A model is developed to accurately and efficiently capture the variation of the free surface shape with different bubble parameters. In addition, a systematic approach is developed within the MOR framework to find the best initial locations and pressures for a set of bubbles beneath the quiescent free surface such that the resultant free surface attained is close to a desired shape. Predictions of the free surface in two-dimensions and three-dimensions are presented. / Singapore-MIT Alliance (SMA)
6

The Effect of Electrohydraulic Discharge on Flotation Deinking Efficiency

Carleton, James Richard 12 January 2005 (has links)
Firing an underwater spark discharge generates an expanding plasma which causes a spherical shockwave to propagate through the surrounding water. The shockwave can have many effects, including resonance effects on bubbles, mechanical destructive effects on solid surfaces and living organisms, and sonochemical oxidative effects on particles and chemical species present in the water. This phenomenon has been shown to improve the efficiency of ink removal in a laboratory flotation deinking cell, while simultaneously decreasing fiber loss. These process improvements are attributed to the sonochemical oxidation of ink particle surfaces, caused by shockwave-induced cavitation. This finding is supported by zeta potential measurements. Sparking was found to reduce the zeta potential of ink particles by up to 20 mV. When sparking was performed during deinking, no effect was found on either ink removal or solids loss. However, when the pulp was pretreated with sparking before flotation, a significant improvement was seen in the brightness gain. Further, fiber loss was decreased by up to 25% in a single flotation stage. The economics of this process are attractive; payback is on the order of three months based on fiber savings alone. Also, at about 1.5 kJ per spark, the power requirements are minimal with respect to the benefit derived.
7

Experimental Study of Chamber Volume Effect on Bubble Growth from Orifice Plates Submerged in Liquid Pools

Gokhale, Omkar S. 09 July 2019 (has links)
No description available.
8

Numerical Study of Energy Loss Mechanisms in Oscillating Underwater Explosion (UNDEX) Bubbles

Jamerson, Colby 29 September 2022 (has links)
In this study a modern hydrocode, blastFoam, that was designed for multi-phase compressible flow problems with applications suited for high-explosive detonation was investigated for underwater explosion (UNDEX) events. The problem of over-prediction for long-term UNDEX bubble behavior in modern hydrocodes that is known to be due to neglected secondary energy-loss mechanisms is evaluated. A single secondary energy-loss mechanism is established as the most significant loss mechanism that is being disregarded in current hydrocodes. The leading secondary energy-loss mechanism is formulated into a computational model that modifies the Jones-Wilkins-Lee (JWL) equation of state (EOS). Explanation and guidance for implementing the model in an Finite Volume Method (FVM) Eulerian-based hydrocode is provided. Through this research this thesis aims to improve long-term UNDEX bubble behavior prediction. Which is apart of a larger effort to improve numerical and computational predictions of UNDEX-induced structural ship response. / M.S. / Predicting the bubble dynamics of an underwater explosion (UNDEX) event is of great importance for the survivability of America’s warships. Shock waves from high-energy explosives are destructive to anything and everything nearby. Therefore, the design and development of military machinery rely on the accurate predictions of computational simulations. Computational solvers must be able to simulate the initial propagating shock waves from an underwater explosion, as well as the smaller following shock waves from the oscillating UNDEX bubble. Current incompressible solvers neglect the important compressible effects needed to predict the behavior for the UNDEX bubble oscillation cycle. If America’s Navy cannot predict the long-term damaging effects that a warship may encounter from an UNDEX bubble, then America’s warships and crew could not survive at battle. This study considers the assumptions used to simplify current UNDEX computational solvers in order to investigate and organize a compressible long-term simulation model. This model improves the multi-pulse bubble dynamic predictions for an UNDEX event, and will in return help design a long-term battle-ready warship for America’s future warfare.
9

Computational Modeling of Bubble Growth Dynamics in Nucleate Pool Boiling for Pure Water and Aqueous Surfactant Solutions

Romanchuk, Bradley J. 13 October 2014 (has links)
No description available.
10

Experimental Characterization of Bubble Dynamics in Isothermal Liquid Pools

SUBRAMANI, ARAVIND 22 April 2008 (has links)
No description available.

Page generated in 0.0712 seconds