Spelling suggestions: "subject:"células a combustível alcalina"" "subject:"células a combustível alcalinidade""
1 |
Síntese e estudo da atividade eletrocatalítica de óxidos de metais de transição e de nanopartículas de prata e ouro para a reação de redução de oxigênio / Synthesis and study of the electrocatalytic activity of transition metal oxides, and silver and gold nanoparticles for the oxygen reduction reactionQueiroz, Adriana Coêlho 10 August 2011 (has links)
A reação de redução de oxigênio (RRO) foi estudada em eletrocatalisadores formados por nanopartículas de óxidos puros e mistos de metais de transição de Mn, Co e Ni, além de estrutura tipo espinel, e por nanopartículas de Ag, Au e Ag3M (M= Au, Pt, Pd e Cu) suportadas em carbono Vulcan, em eletrólito alcalino. Os óxidos de metais de transição foram sintetizados por decomposição térmica de seus respectivos nitratos e as nanopartículas a base de prata e ouro foram sintetizadas por redução química com borohidreto. Os eletrocatalisadores foram caracterizados por Difratometria e Espectroscopia de Absorção de Raios X (somente para os óxidos de transição). Os materiais a base de óxidos de manganês, mostraram-se com alta atividade para a RRO, para os quais os resultados espectroscópicos in situ evidenciaram a ocorrência da redução do Mn(IV) para Mn(III), na região de início da RRO. Assim, as atividades eletrocatalíticas foram associadas à ocorrência da transferência de elétrons do Mn(III) para o O2. Entretanto, apresentaram forte desativação após ciclagem potenciodinâmica, o que foi associado à formação da fase Mn3O4, conforme indicado por difratometria de Raios X, após os experimentos eletroquímicos, que é eletroquimicamente inativa. Já o material formado pela estrutura do tipo espinel de MnCo2O4 apresentou alta atividade e estabilidade frente à ciclagem e à RRO. A alta atividade eletrocatalítica foi relacionada a ocorrência do par redox CoII/CoIII em maiores valores de potencial em relação ao CoOx e MnOx, devido a interações entre os átomos de Co e Mn no reticulo espinélico. Contrariamente ao observado nos óxidos com maior quantidade de manganês, o espinel mostrou-se altamente estável, o que foi associada à não alteração de sua estrutura no intervalo de potenciais que a RRO ocorre. Para os materiais bimetálicos a base de prata e ouro, os experimentos eletroquímicos indicaram maior atividade eletrocatalítica para o material de Ag3Au/C. Neste caso, a alta atividade foi associada a dois efeitos principais: (i) a um efeito sinergético, no qual os átomos de ouro atuam na região de ativação, favorecendo a adição de hidrogênio e os átomos vizinhos de prata proporcionam a quebra da ligação O-O, conduzindo a RRO pelo caminho de quatro elétrons por molécula de O2; (ii) ao aumento força da ligação Ag-O, devido à interação da Ag com o Au, resultando em maior atividade para a quebra da ligação O-O, aumentando a atividade da Ag para a RRO, em relação à atividade da Ag pura. Assim, a RRO apresentou menor sobrepotencial e maior número de elétrons em Ag3Au/C, quando comparado com as demais nanopartículas bimetálicas. / The oxygen reduction reaction (ORR) was studied on electrocatalysts composed by pure and mixed transition metal oxides of Mn, Co, and Ni, including spinel-like structures, and by Ag, Au, and Ag3M/C (M= Au, Pt, Pd e Cu) bimetallic nanoparticles, in alkaline electrolyte. The transition metal oxides were synthesized by thermal decomposition of their nitrates, and the silver and gold-based nanoparticles by chemical reduction using borohydride. The electrocatalysts were characterized by X-Ray Diffraction and X-Ray Absorption Spectroscopy (in the case of the metal oxides). The manganese-based oxide materials showed high activity for the ORR, in which the in situ spectroscopic results evidenced the Mn(IV) to Mn(III) reduction, in the range of the ORR onset. In this case, the electrocatalytic activities were correlated to the transfer of electron from Mn(III) to O2. However, they presented strong deactivation after several potentiodynamic cycles, which was ascribed to the formation of the electrochemically inactive phase of Mn3O4, as indicated by the XRD results, after the electrochemical experiments. On the other hand, the MnCo2O4 spinel-like material showed high activity and stability for the ORR. Its high electocatalytic activity was attributed to the CoII/CoIII redox pair, taking place at higher potentials, in relation to that of the CoOx e MnOx pure phases, due to the Co and Mn interactions in the spinel lattice. Contrarily to the behavior observed for the manganese-based materials, the spinel oxide presented high stability, which was ascribed to the non alteration of its crystallographic structure in the range of potentials tha the ORR takes place. For the Au and Ag-based materials, the electrochemical experiments indicated higher electrocatalytic activities for Ag3Au/C. In this case, its higher activity as associated to two main aspects: (i) to a synergetic effect, in which the gold atoms act in the activation region, facilitating the hydrogen addition, and the neighboring Ag atoms promoting the O-O bond breaking, leading the ORR to the 4-electrons pathway; (ii) to the increased Ag-O bond strength, due to the electronic interaction between Ag and the Au atoms, resulting in a faster O-O bond breaking, enhancing the electrocatalytic activity of the Ag atoms in the Ag3Au/C nanoparticle, in relation to that on the pure Ag. Therefore, the ORR presented lower overpotential and higher number of electrons in the Ag3Au/C electrocatalyst, when compared to the other investigated bimetallic nanoparticles.
|
2 |
Desenvolvimento de membranas aniônicas obtidas por enxertia via irradiação para aplicação em células a combustível alcalinas / Development of anionic membranes produced by radiation-grafting for alkaline fuel cell applicationsClotilde Coppini Pereira 31 January 2017 (has links)
As membranas de troca aniônica são uma alternativa promissora para o desenvolvimento de eletrólitos mais eficientes para células a combustível alcalinas. Em geral, as membranas de troca aniônica são ionômeros capazes de conduzir íons hidroxila devido aos grupos quaternário de amônio e têm como característica elevado pH equivalente. Com o objetivo de desenvolver membranas aniônicas química e termicamente estáveis, com satisfatória condutividade iônica para aplicação em células a combustível alcalinas, as membranas aniônicas foram sintetizadas a partir de polímeros base de polietileno de baixa densidade (LDPE), polietileno de ultra alto peso molecular (PEUHMW), poli(etileno-co-tetrafluoroetileno) (PETFE) e poli(tetrafluoroetilleno-co-hexafluoroetileno) (PFEP) previamente irradiados nas fontes de radiação gama de 60Co ou com feixe de elétrons, para enxertia do monômero de estireno e funcionalizados com trimetilamina para incorporação dos grupos quaternário de amônio. As membranas resultantes foram caracterizadas por espectroscopia de ressonância paramagnética eletrônica (EPR), espectroscopia Raman, termogravimetria (TG), espectroscopia de impedância eletroquímica (EIS), além da determinação do grau de enxertia, capacidade de absorção de água por gravimetria e capacidade de troca iônica, por titulação. As membranas sintetizadas com os polímeros LDPE e UHMWPE pré-irradiados a 70 kGy com feixe de elétrons e armazenadas a baixa temperatura (-70 °C) por até 10 meses, mostraram resultados de condutividade iônica, quando na forma (OH-), de 29 mS.cm-1 e 14 mS.cm-1 a 65 °C, respectivamente. Os filmes de PFEP irradiados no processo simultâneo mostram níveis de enxertia insuficientes para a síntese de membranas aniônicas, necessitando maiores estudos para aperfeiçoar os processos de irradiação e enxertia. As membranas baseadas em PETFE, pré-irradiadas a 70 kGy com feixe de elétrons e armazenadas a baixa temperatura (-70 °C) por até 10 meses, mostraram maior condutividade iônica, quando na forma hidroxila (OH-), com valores de condutividade iônica entre 90 mS.cm-1 e 165 mS.cm-1 na faixa de temperatura entre 30 e 60 °C. Estes resultados mostraram que membranas de LDPE, UHMWPE e PETFE são eletrólitos promissores para a aplicação em células a combustível alcalinas. / Anion Exchange Membranes (AEMs) are a promising alternative to the development of more efficient electrolytes for alkaline fuel cells. In general, the AEMs are ionomeric membranes able to conduct hydroxide ions (OH-) due to the quatermary ammonium groups, which confer high pH equivalent to the AEM. In order to develop alkaline membranes with high chemical and thermal stability, besides satisfactory ionic conductivity for alkaline fuel cells, membranes based on low density polyethylene (LDPE), ultrahigh weight molecular weight polyethylene (UHWHPE), poly(ethylene-co-tetrafluoroethylene) (PETFE) and poly(hexafluoropropylene-co-tetrafluoroethylene) (PFEP) previously irradiated by using 60Co gamma and electron beam sources, have been synthesized by styrene-grafting, and functionalized with trimethylamine to introduced quaternary ammonium groups. The resulting membranes were characterized by electron paramagnetic resonance (EPR), Raman spectroscopy, thermogravimetry (TG) and electrochemical impedance spectroscopy (EIS). The determination of the grafting degree and water uptake were conducted by gravimetry and ion exchange capacity, by titration. The membranes synthesized with PELD and PEUHMW polymers pre-irradiated at 70 kGy and stored at low temperature (-70 °C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH-), of 29 mS.cm-1 and 14 mS.cm-1 at 65 °C, respectively. The PFEP polymers irradiated by the simultaneous process showed insufficient grating levels for the membrane synthesis, requiring more studies to improve the irradiation and grafting process. The styrene-grafted PETFE membranes, pre-irradiated at 70 kGy and stored at low temperature (-70 °C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH-), of 90 mS.cm-1 to 165 mS.cm-1, in the temperature range 30 to 60 °C. Such results have demonstrated that LDPE, UHMWPE and PETFE based AEMs are promising electrolytes for alkaline fuel cell application.
|
3 |
Estudo das propriedades eletrocatalíticas de óxidos de manganês puros ou modificados com cobre e bismuto para reação de redução de oxigênio em meio alcalino / Study of the electrocatalytic properties of pure manganese oxide or modified with copper and bismuth for oxygen reduction reaction in alkaline mediumFrejlich, Sara Walmsley 13 March 2015 (has links)
Catalisadores catódicos para aplicação em células a combustível alcalinas (AFCs) baseados em dióxido de manganês, como alternativa aos tradicionais catalisadores baseados em platina foram estudados no presente trabalho. O principal objetivo foi avaliar a viabilidade do uso de α-MnO2 através do estudo da atividade eletrocatalítica frente à reação de redução de oxigênio (RRO) do referido óxido em comparação com a atividade eletrocatalítica do material de referência baseado em platina, visando minimizar os elevados custos desses catalisadores que tornam muito restrita a comercialização das células a combustível apesar das vantagens comprovadas desse tipo de tecnologia. O uso de α-MnO2 para completa substituição da platina se mostrou viável por apresentar atividade catalítica comparável à da platina, e com a vantagem adicional de ser um material de menor custo devido à sua abundância. Estudos prévios demonstraram que a RRO catalisada pelo dióxido de manganês ocorre preferencialmente por duas vias: redução direta via quatro elétrons, ou redução por dois elétrons com formação de peróxido de hidrogênio como produto final. A redução direta via quatro elétrons é o mecanismo mais comum, seguido na maioria das estruturas cristalográficas, e é o mecanismo de reação de interesse para aplicação em células a combustível, sendo, portanto, o peróxido de hidrogênio um produto indesejável para esse tipo de aplicação. Foram promovidas modificações do referido óxido de manganês (α-MnO2) pela incorporação de metais não nobres (Cu e Bi) para estudar o impacto dessas modificações nas propriedades físico-químicas desses óxidos. Os resultados obtidos demonstraram que a dopagem com Cu não promoveu alterações significativas nas propriedades desses óxidos. Em contrapartida, a dopagem com bismuto promoveu resultados significativos. A incorporação de Bi3+ na estrutura cristalina do α-MnO2 promoveu o aumento da condutividade eletrônica desse óxido, permitindo assim a eliminação do suporte de carbono, ocasionando desse modo, a eliminação quase que total da formação de peróxido de hidrogênio. Dessa maneira, os resultados mostraram que no caso específico desse material dopado, a RRO se dá predominantemente pela redução direta via quatro elétrons. Os resultados apresentados no presente trabalho, demonstraram que a dopagem do α-MnO2 com Bi3+ resulta em um material bastante promissor como catalisador catódico de AFCs. / Cathode catalysts for application in alkaline fuel cells (AFCs) based on manganese dioxide as alternative to traditional platinum-based catalysts were studied in this work. The main objective was to evaluate the feasibility of using α-MnO2 through the study of electrocatalytic activity toward the oxygen reduction reaction (ORR) of said oxide compared to the electrocatalytic activity of platinum-based reference materials, aiming to cheapen the high costs of these catalysts that make very limited the marketing of fuel cells despite the proven benefits of such technology. The use of α-MnO2 as a complete substitution of platinum demonstrated to be viable due to its catalytic activity comparable with that of platinum, having the additional advantage of being a less costly material because of its abundance. Previous studies demonstrated that the ORR catalyzed by manganese dioxide takes place preferably in two ways: Direct reduction via four electrons or two electrons by reduction with formation of hydrogen peroxide as the final product. The direct reduction via four electrons is the most common mechanism, followed in most crystal structures, and the reaction mechanism is the one of interest for application in fuel cells. The production of hydrogen peroxide is undesirable for this type of application. Modifications of said manganese oxide (α-MnO2) by the incorporation of non-noble metals (Cu and Bi) were promoted to study the impact of these modifications on the physicochemical properties of these oxides. The results showed that doping with Cu did not cause significant changes in the properties of these oxides. By contrast, doping with bismuth promoted interesting and significant results. The incorporation of Bi3+ in a crystalline structure of α-MnO2 promoted the increase of the electronic conductivity of this oxide, thereby allowing the elimination of the carbon support, consequently causing the almost complete elimination of the formation of hydrogen peroxide. Thus, the results showed that in the specific case of this doped material, the ORR occurs predominantly by direct reduction via 4 electrons. The results presented in this study demonstrated that the α-MnO2 doped with Bi3+ showed a very promising cathode material for application in AFCs.
|
4 |
Estudo das reações de eletro-oxidação de hidrazina e íons borohidreto em eletrocatalisadores de níquel e cobalto em eletrólito alcalino / Study of the hydrazine and borohydride ions electro-oxidation reactions on nickel and cobalt based electrocatalysts in alkaline electrolyteOliveira, Drielly Cristina de 16 December 2016 (has links)
Compostos com alto conteúdo de hidrogênio, tais como hidrazina (N2H4) e íons borohidreto (BH4-), apresentam grande potencialidade como combustíveis em células a combustível ou em reformadores eletroquímicos para a geração de hidrogênio, uma vez que apresentam alta densidade de energia. Além disso, as reações de eletro-oxidação dessas espécies podem ser catalisadas por metais não nobres como Ni e Co, em eletrólito alcalino. Dessa forma, este projeto de pesquisa teve como objetivo a síntese e a investigação da atividade eletrocatalítica de eletrocatalisadores formados por nanopartículas de níquel e cobalto e por níquel em combinação com outro metal também ativo, como a platina, representados genericamente por NiO/C, Co3O4/C NiO-Pt/C, para a eletro-oxidação de hidrazina e de íons borohidreto. Os resultados eletroquímicos mostraram maiores atividades eletrocatalíticas, tanto para a eletro-oxidação de hidrazina quanto para íons borohidreto, para Co3O4/C em relação ao NiO/C, mas evidenciaram maior estabilidade para NiO/C. Tanto para NiO/C como para NiO-Pt/C, os experimentos mostraram que, em potenciais logo acima do de circuito aberto, a atividade eletrocatalítica origina-se da coexistência de espécies de Ni0 ou Pt0 e Ni-OH superficiais, onde a reação de eletro-oxidação de hidrazina é catalisada com efeito sinérgico bifuncional relacionado ao acoplamento de Ni-H ou Pt-H, gerado pela adsorção dissociativa de hidrazina (ou borohidreto), e Ni-OH, gerado pela descarga de OH- em baixos potenciais. Em altos sobrepotenciais, as correntes faradaicas aumentam significativamente e, para as duas reações, é proposto uma mecanismo de mediação de elétrons, no qual a hidrazina ou os íons borohidreto reduzem quimicamente o óxido de níquel ou de cobalto, com a geração de produtos destes combustíveis, e isto é seguido pela eletro-oxidação do metal, induzido pelo alto potencial do eletrodo, fechando o ciclo de mediação. Resultados de experimentos de DEMS online (Differential Electrochemical Mass Spectrometry), tanto para NiO/C ou Co3O4/C, quanto para NiO-Pt/C (somente para hidrazina neste caso), mostraram que as correntes faradaicas são seguidas pela geração do produto principal (N2 para o caso de hidrazina; BO2- para o borohidreto, sendo que este último não pode ser detectado por DEMS) em baixos sobrepotenciais e, em altos sobrepotenciais, o sinal do produto principal é acompanhado pelos sinais de H2 e de NH3, com comportamento similar. Este resultado evidencia que a reação de eletro-oxidação completa de hidrazina ou de íons borohidreto ocorre em maior extensão somente em baixos sobrepotenciais, sendo que, em altos sobrepotenciais, onde se tem a formação de óxidos de níquel ou de cobalto, as reações operam em maior extensão por vias incompletas de eletro-oxidação, para as quais tem-se a mediação de elétrons como mecanismo reacional. / High hydrogen content compounds, such as hydrazine (N2H4) and borohydride ion (BH4-) exhibit high prospect as fuel for fuel cells or electrochemical reformers for hydrogen generation, since they present high energy density. Moreover, their electro-oxidation reactions can be catalyzed on non-noble electrocatalysts, such as Ni and Co, in alkaline electrolyte. In this way, this project aimed the synthesis and the investigation of the electro-catalytic activity of nickel, cobalt and nickel/platinum nanoparticles based electrocatalysts, named as NiO/C, Co3O4/C and NiO-Pt/C, for hydrazine and borohydride electro-oxidation reactions. Electrochemical results showed high electrocatalytic activity of Co3O4/C for both reactions, (hydrazine and borohydride electro-oxidation), however NiO/C showed more stability. For both NiO/C and or NiO-Pt/C, the experiments showed that under potentials slightly above the open-circuit potential, the electrocatalytic activity comes from the co-existence of Ni0, Pt0 and Ni-OH on the surface. The hydrazine electro-oxidation reaction is catalyzed by a bi-functional synergistic effect related to the Ni-H or Pt-H coupling generated from dissociative adsorption of hydrazine (or borohydride), and Ni-OH, produced by OH- discharge in low potentials. In high overpotentials, the faradaic currents increase significantly for both reactions. An electron-mediated mechanism is proposed for this condition, where the hydrazine or borohydride ions reduces chemically the nickel or cobalt oxide, producing the reaction products from these fuels and, this is followed by the metal electro-oxidation, induced by the high potential of the electrode, completing the mediation cycle. For all electrocatalysts (only hydrazine for NiO-Pt/C), online DEMS (Differential Electrochemical Mass Spectrometry) results showed that the faradaic currents keep up with by the generation of the main product, in low potentials (N2 for hydrazine and BO2- for borohydride, but this last one cannot be detected by DEMS). In high overpotentials, the main product signal is followed by the signals, with similar behavior, of H2 and NH3. This result evidences that the complete hydrazine and borohydride electro-oxidation reactions preferentially occur in low overpotentials, whereas, in high overpotentials, when the nickel or cobalt oxides are present, the reactions occurs preferentially by incomplete pathways, in an electron-mediated mechanism.
|
5 |
Desenvolvimento de membranas aniônicas obtidas por enxertia via irradiação para aplicação em células a combustível alcalinas / Development of anionic membranes produced by radiation-grafting for alkaline fuel cell applicationsPereira, Clotilde Coppini 31 January 2017 (has links)
As membranas de troca aniônica são uma alternativa promissora para o desenvolvimento de eletrólitos mais eficientes para células a combustível alcalinas. Em geral, as membranas de troca aniônica são ionômeros capazes de conduzir íons hidroxila devido aos grupos quaternário de amônio e têm como característica elevado pH equivalente. Com o objetivo de desenvolver membranas aniônicas química e termicamente estáveis, com satisfatória condutividade iônica para aplicação em células a combustível alcalinas, as membranas aniônicas foram sintetizadas a partir de polímeros base de polietileno de baixa densidade (LDPE), polietileno de ultra alto peso molecular (PEUHMW), poli(etileno-co-tetrafluoroetileno) (PETFE) e poli(tetrafluoroetilleno-co-hexafluoroetileno) (PFEP) previamente irradiados nas fontes de radiação gama de 60Co ou com feixe de elétrons, para enxertia do monômero de estireno e funcionalizados com trimetilamina para incorporação dos grupos quaternário de amônio. As membranas resultantes foram caracterizadas por espectroscopia de ressonância paramagnética eletrônica (EPR), espectroscopia Raman, termogravimetria (TG), espectroscopia de impedância eletroquímica (EIS), além da determinação do grau de enxertia, capacidade de absorção de água por gravimetria e capacidade de troca iônica, por titulação. As membranas sintetizadas com os polímeros LDPE e UHMWPE pré-irradiados a 70 kGy com feixe de elétrons e armazenadas a baixa temperatura (-70 °C) por até 10 meses, mostraram resultados de condutividade iônica, quando na forma (OH-), de 29 mS.cm-1 e 14 mS.cm-1 a 65 °C, respectivamente. Os filmes de PFEP irradiados no processo simultâneo mostram níveis de enxertia insuficientes para a síntese de membranas aniônicas, necessitando maiores estudos para aperfeiçoar os processos de irradiação e enxertia. As membranas baseadas em PETFE, pré-irradiadas a 70 kGy com feixe de elétrons e armazenadas a baixa temperatura (-70 °C) por até 10 meses, mostraram maior condutividade iônica, quando na forma hidroxila (OH-), com valores de condutividade iônica entre 90 mS.cm-1 e 165 mS.cm-1 na faixa de temperatura entre 30 e 60 °C. Estes resultados mostraram que membranas de LDPE, UHMWPE e PETFE são eletrólitos promissores para a aplicação em células a combustível alcalinas. / Anion Exchange Membranes (AEMs) are a promising alternative to the development of more efficient electrolytes for alkaline fuel cells. In general, the AEMs are ionomeric membranes able to conduct hydroxide ions (OH-) due to the quatermary ammonium groups, which confer high pH equivalent to the AEM. In order to develop alkaline membranes with high chemical and thermal stability, besides satisfactory ionic conductivity for alkaline fuel cells, membranes based on low density polyethylene (LDPE), ultrahigh weight molecular weight polyethylene (UHWHPE), poly(ethylene-co-tetrafluoroethylene) (PETFE) and poly(hexafluoropropylene-co-tetrafluoroethylene) (PFEP) previously irradiated by using 60Co gamma and electron beam sources, have been synthesized by styrene-grafting, and functionalized with trimethylamine to introduced quaternary ammonium groups. The resulting membranes were characterized by electron paramagnetic resonance (EPR), Raman spectroscopy, thermogravimetry (TG) and electrochemical impedance spectroscopy (EIS). The determination of the grafting degree and water uptake were conducted by gravimetry and ion exchange capacity, by titration. The membranes synthesized with PELD and PEUHMW polymers pre-irradiated at 70 kGy and stored at low temperature (-70 °C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH-), of 29 mS.cm-1 and 14 mS.cm-1 at 65 °C, respectively. The PFEP polymers irradiated by the simultaneous process showed insufficient grating levels for the membrane synthesis, requiring more studies to improve the irradiation and grafting process. The styrene-grafted PETFE membranes, pre-irradiated at 70 kGy and stored at low temperature (-70 °C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH-), of 90 mS.cm-1 to 165 mS.cm-1, in the temperature range 30 to 60 °C. Such results have demonstrated that LDPE, UHMWPE and PETFE based AEMs are promising electrolytes for alkaline fuel cell application.
|
6 |
Síntese e estudo da atividade eletrocatalítica de óxidos de metais de transição e de nanopartículas de prata e ouro para a reação de redução de oxigênio / Synthesis and study of the electrocatalytic activity of transition metal oxides, and silver and gold nanoparticles for the oxygen reduction reactionAdriana Coêlho Queiroz 10 August 2011 (has links)
A reação de redução de oxigênio (RRO) foi estudada em eletrocatalisadores formados por nanopartículas de óxidos puros e mistos de metais de transição de Mn, Co e Ni, além de estrutura tipo espinel, e por nanopartículas de Ag, Au e Ag3M (M= Au, Pt, Pd e Cu) suportadas em carbono Vulcan, em eletrólito alcalino. Os óxidos de metais de transição foram sintetizados por decomposição térmica de seus respectivos nitratos e as nanopartículas a base de prata e ouro foram sintetizadas por redução química com borohidreto. Os eletrocatalisadores foram caracterizados por Difratometria e Espectroscopia de Absorção de Raios X (somente para os óxidos de transição). Os materiais a base de óxidos de manganês, mostraram-se com alta atividade para a RRO, para os quais os resultados espectroscópicos in situ evidenciaram a ocorrência da redução do Mn(IV) para Mn(III), na região de início da RRO. Assim, as atividades eletrocatalíticas foram associadas à ocorrência da transferência de elétrons do Mn(III) para o O2. Entretanto, apresentaram forte desativação após ciclagem potenciodinâmica, o que foi associado à formação da fase Mn3O4, conforme indicado por difratometria de Raios X, após os experimentos eletroquímicos, que é eletroquimicamente inativa. Já o material formado pela estrutura do tipo espinel de MnCo2O4 apresentou alta atividade e estabilidade frente à ciclagem e à RRO. A alta atividade eletrocatalítica foi relacionada a ocorrência do par redox CoII/CoIII em maiores valores de potencial em relação ao CoOx e MnOx, devido a interações entre os átomos de Co e Mn no reticulo espinélico. Contrariamente ao observado nos óxidos com maior quantidade de manganês, o espinel mostrou-se altamente estável, o que foi associada à não alteração de sua estrutura no intervalo de potenciais que a RRO ocorre. Para os materiais bimetálicos a base de prata e ouro, os experimentos eletroquímicos indicaram maior atividade eletrocatalítica para o material de Ag3Au/C. Neste caso, a alta atividade foi associada a dois efeitos principais: (i) a um efeito sinergético, no qual os átomos de ouro atuam na região de ativação, favorecendo a adição de hidrogênio e os átomos vizinhos de prata proporcionam a quebra da ligação O-O, conduzindo a RRO pelo caminho de quatro elétrons por molécula de O2; (ii) ao aumento força da ligação Ag-O, devido à interação da Ag com o Au, resultando em maior atividade para a quebra da ligação O-O, aumentando a atividade da Ag para a RRO, em relação à atividade da Ag pura. Assim, a RRO apresentou menor sobrepotencial e maior número de elétrons em Ag3Au/C, quando comparado com as demais nanopartículas bimetálicas. / The oxygen reduction reaction (ORR) was studied on electrocatalysts composed by pure and mixed transition metal oxides of Mn, Co, and Ni, including spinel-like structures, and by Ag, Au, and Ag3M/C (M= Au, Pt, Pd e Cu) bimetallic nanoparticles, in alkaline electrolyte. The transition metal oxides were synthesized by thermal decomposition of their nitrates, and the silver and gold-based nanoparticles by chemical reduction using borohydride. The electrocatalysts were characterized by X-Ray Diffraction and X-Ray Absorption Spectroscopy (in the case of the metal oxides). The manganese-based oxide materials showed high activity for the ORR, in which the in situ spectroscopic results evidenced the Mn(IV) to Mn(III) reduction, in the range of the ORR onset. In this case, the electrocatalytic activities were correlated to the transfer of electron from Mn(III) to O2. However, they presented strong deactivation after several potentiodynamic cycles, which was ascribed to the formation of the electrochemically inactive phase of Mn3O4, as indicated by the XRD results, after the electrochemical experiments. On the other hand, the MnCo2O4 spinel-like material showed high activity and stability for the ORR. Its high electocatalytic activity was attributed to the CoII/CoIII redox pair, taking place at higher potentials, in relation to that of the CoOx e MnOx pure phases, due to the Co and Mn interactions in the spinel lattice. Contrarily to the behavior observed for the manganese-based materials, the spinel oxide presented high stability, which was ascribed to the non alteration of its crystallographic structure in the range of potentials tha the ORR takes place. For the Au and Ag-based materials, the electrochemical experiments indicated higher electrocatalytic activities for Ag3Au/C. In this case, its higher activity as associated to two main aspects: (i) to a synergetic effect, in which the gold atoms act in the activation region, facilitating the hydrogen addition, and the neighboring Ag atoms promoting the O-O bond breaking, leading the ORR to the 4-electrons pathway; (ii) to the increased Ag-O bond strength, due to the electronic interaction between Ag and the Au atoms, resulting in a faster O-O bond breaking, enhancing the electrocatalytic activity of the Ag atoms in the Ag3Au/C nanoparticle, in relation to that on the pure Ag. Therefore, the ORR presented lower overpotential and higher number of electrons in the Ag3Au/C electrocatalyst, when compared to the other investigated bimetallic nanoparticles.
|
7 |
Estudo das propriedades eletrocatalíticas de óxidos de manganês puros ou modificados com cobre e bismuto para reação de redução de oxigênio em meio alcalino / Study of the electrocatalytic properties of pure manganese oxide or modified with copper and bismuth for oxygen reduction reaction in alkaline mediumSara Walmsley Frejlich 13 March 2015 (has links)
Catalisadores catódicos para aplicação em células a combustível alcalinas (AFCs) baseados em dióxido de manganês, como alternativa aos tradicionais catalisadores baseados em platina foram estudados no presente trabalho. O principal objetivo foi avaliar a viabilidade do uso de α-MnO2 através do estudo da atividade eletrocatalítica frente à reação de redução de oxigênio (RRO) do referido óxido em comparação com a atividade eletrocatalítica do material de referência baseado em platina, visando minimizar os elevados custos desses catalisadores que tornam muito restrita a comercialização das células a combustível apesar das vantagens comprovadas desse tipo de tecnologia. O uso de α-MnO2 para completa substituição da platina se mostrou viável por apresentar atividade catalítica comparável à da platina, e com a vantagem adicional de ser um material de menor custo devido à sua abundância. Estudos prévios demonstraram que a RRO catalisada pelo dióxido de manganês ocorre preferencialmente por duas vias: redução direta via quatro elétrons, ou redução por dois elétrons com formação de peróxido de hidrogênio como produto final. A redução direta via quatro elétrons é o mecanismo mais comum, seguido na maioria das estruturas cristalográficas, e é o mecanismo de reação de interesse para aplicação em células a combustível, sendo, portanto, o peróxido de hidrogênio um produto indesejável para esse tipo de aplicação. Foram promovidas modificações do referido óxido de manganês (α-MnO2) pela incorporação de metais não nobres (Cu e Bi) para estudar o impacto dessas modificações nas propriedades físico-químicas desses óxidos. Os resultados obtidos demonstraram que a dopagem com Cu não promoveu alterações significativas nas propriedades desses óxidos. Em contrapartida, a dopagem com bismuto promoveu resultados significativos. A incorporação de Bi3+ na estrutura cristalina do α-MnO2 promoveu o aumento da condutividade eletrônica desse óxido, permitindo assim a eliminação do suporte de carbono, ocasionando desse modo, a eliminação quase que total da formação de peróxido de hidrogênio. Dessa maneira, os resultados mostraram que no caso específico desse material dopado, a RRO se dá predominantemente pela redução direta via quatro elétrons. Os resultados apresentados no presente trabalho, demonstraram que a dopagem do α-MnO2 com Bi3+ resulta em um material bastante promissor como catalisador catódico de AFCs. / Cathode catalysts for application in alkaline fuel cells (AFCs) based on manganese dioxide as alternative to traditional platinum-based catalysts were studied in this work. The main objective was to evaluate the feasibility of using α-MnO2 through the study of electrocatalytic activity toward the oxygen reduction reaction (ORR) of said oxide compared to the electrocatalytic activity of platinum-based reference materials, aiming to cheapen the high costs of these catalysts that make very limited the marketing of fuel cells despite the proven benefits of such technology. The use of α-MnO2 as a complete substitution of platinum demonstrated to be viable due to its catalytic activity comparable with that of platinum, having the additional advantage of being a less costly material because of its abundance. Previous studies demonstrated that the ORR catalyzed by manganese dioxide takes place preferably in two ways: Direct reduction via four electrons or two electrons by reduction with formation of hydrogen peroxide as the final product. The direct reduction via four electrons is the most common mechanism, followed in most crystal structures, and the reaction mechanism is the one of interest for application in fuel cells. The production of hydrogen peroxide is undesirable for this type of application. Modifications of said manganese oxide (α-MnO2) by the incorporation of non-noble metals (Cu and Bi) were promoted to study the impact of these modifications on the physicochemical properties of these oxides. The results showed that doping with Cu did not cause significant changes in the properties of these oxides. By contrast, doping with bismuth promoted interesting and significant results. The incorporation of Bi3+ in a crystalline structure of α-MnO2 promoted the increase of the electronic conductivity of this oxide, thereby allowing the elimination of the carbon support, consequently causing the almost complete elimination of the formation of hydrogen peroxide. Thus, the results showed that in the specific case of this doped material, the ORR occurs predominantly by direct reduction via 4 electrons. The results presented in this study demonstrated that the α-MnO2 doped with Bi3+ showed a very promising cathode material for application in AFCs.
|
8 |
Estudo das reações de eletro-oxidação de hidrazina e íons borohidreto em eletrocatalisadores de níquel e cobalto em eletrólito alcalino / Study of the hydrazine and borohydride ions electro-oxidation reactions on nickel and cobalt based electrocatalysts in alkaline electrolyteDrielly Cristina de Oliveira 16 December 2016 (has links)
Compostos com alto conteúdo de hidrogênio, tais como hidrazina (N2H4) e íons borohidreto (BH4-), apresentam grande potencialidade como combustíveis em células a combustível ou em reformadores eletroquímicos para a geração de hidrogênio, uma vez que apresentam alta densidade de energia. Além disso, as reações de eletro-oxidação dessas espécies podem ser catalisadas por metais não nobres como Ni e Co, em eletrólito alcalino. Dessa forma, este projeto de pesquisa teve como objetivo a síntese e a investigação da atividade eletrocatalítica de eletrocatalisadores formados por nanopartículas de níquel e cobalto e por níquel em combinação com outro metal também ativo, como a platina, representados genericamente por NiO/C, Co3O4/C NiO-Pt/C, para a eletro-oxidação de hidrazina e de íons borohidreto. Os resultados eletroquímicos mostraram maiores atividades eletrocatalíticas, tanto para a eletro-oxidação de hidrazina quanto para íons borohidreto, para Co3O4/C em relação ao NiO/C, mas evidenciaram maior estabilidade para NiO/C. Tanto para NiO/C como para NiO-Pt/C, os experimentos mostraram que, em potenciais logo acima do de circuito aberto, a atividade eletrocatalítica origina-se da coexistência de espécies de Ni0 ou Pt0 e Ni-OH superficiais, onde a reação de eletro-oxidação de hidrazina é catalisada com efeito sinérgico bifuncional relacionado ao acoplamento de Ni-H ou Pt-H, gerado pela adsorção dissociativa de hidrazina (ou borohidreto), e Ni-OH, gerado pela descarga de OH- em baixos potenciais. Em altos sobrepotenciais, as correntes faradaicas aumentam significativamente e, para as duas reações, é proposto uma mecanismo de mediação de elétrons, no qual a hidrazina ou os íons borohidreto reduzem quimicamente o óxido de níquel ou de cobalto, com a geração de produtos destes combustíveis, e isto é seguido pela eletro-oxidação do metal, induzido pelo alto potencial do eletrodo, fechando o ciclo de mediação. Resultados de experimentos de DEMS online (Differential Electrochemical Mass Spectrometry), tanto para NiO/C ou Co3O4/C, quanto para NiO-Pt/C (somente para hidrazina neste caso), mostraram que as correntes faradaicas são seguidas pela geração do produto principal (N2 para o caso de hidrazina; BO2- para o borohidreto, sendo que este último não pode ser detectado por DEMS) em baixos sobrepotenciais e, em altos sobrepotenciais, o sinal do produto principal é acompanhado pelos sinais de H2 e de NH3, com comportamento similar. Este resultado evidencia que a reação de eletro-oxidação completa de hidrazina ou de íons borohidreto ocorre em maior extensão somente em baixos sobrepotenciais, sendo que, em altos sobrepotenciais, onde se tem a formação de óxidos de níquel ou de cobalto, as reações operam em maior extensão por vias incompletas de eletro-oxidação, para as quais tem-se a mediação de elétrons como mecanismo reacional. / High hydrogen content compounds, such as hydrazine (N2H4) and borohydride ion (BH4-) exhibit high prospect as fuel for fuel cells or electrochemical reformers for hydrogen generation, since they present high energy density. Moreover, their electro-oxidation reactions can be catalyzed on non-noble electrocatalysts, such as Ni and Co, in alkaline electrolyte. In this way, this project aimed the synthesis and the investigation of the electro-catalytic activity of nickel, cobalt and nickel/platinum nanoparticles based electrocatalysts, named as NiO/C, Co3O4/C and NiO-Pt/C, for hydrazine and borohydride electro-oxidation reactions. Electrochemical results showed high electrocatalytic activity of Co3O4/C for both reactions, (hydrazine and borohydride electro-oxidation), however NiO/C showed more stability. For both NiO/C and or NiO-Pt/C, the experiments showed that under potentials slightly above the open-circuit potential, the electrocatalytic activity comes from the co-existence of Ni0, Pt0 and Ni-OH on the surface. The hydrazine electro-oxidation reaction is catalyzed by a bi-functional synergistic effect related to the Ni-H or Pt-H coupling generated from dissociative adsorption of hydrazine (or borohydride), and Ni-OH, produced by OH- discharge in low potentials. In high overpotentials, the faradaic currents increase significantly for both reactions. An electron-mediated mechanism is proposed for this condition, where the hydrazine or borohydride ions reduces chemically the nickel or cobalt oxide, producing the reaction products from these fuels and, this is followed by the metal electro-oxidation, induced by the high potential of the electrode, completing the mediation cycle. For all electrocatalysts (only hydrazine for NiO-Pt/C), online DEMS (Differential Electrochemical Mass Spectrometry) results showed that the faradaic currents keep up with by the generation of the main product, in low potentials (N2 for hydrazine and BO2- for borohydride, but this last one cannot be detected by DEMS). In high overpotentials, the main product signal is followed by the signals, with similar behavior, of H2 and NH3. This result evidences that the complete hydrazine and borohydride electro-oxidation reactions preferentially occur in low overpotentials, whereas, in high overpotentials, when the nickel or cobalt oxides are present, the reactions occurs preferentially by incomplete pathways, in an electron-mediated mechanism.
|
Page generated in 0.1085 seconds