Spelling suggestions: "subject:"mitogène"" "subject:"autogène""
1 |
Ketogenic diet impacts Blood-Brain Barrier physiology : implications for Alzheimers's disease / Impact du régime cétogène sur la physiologie de la barrière hémato-encéphalique : importance pour la maladie d'AlzheimerCorsi, Mariangela 22 February 2018 (has links)
Compte tenu de l'absence de traitement pharmacologique efficace contre la maladie d'Alzheimer (MA), le développement d'approches thérapeutiques alternatives telles que le régime cétogène (« ketogenic diet » : KD) pourrait être envisagé. Le KD est un régime riche en graisses, basé sur la production de corps cétoniques (« ketone nodies » : KB) dans le sang. En raison des effets bénéfiques du KD sur le système nerveux central et de l'absence de données publiées sur la barrière hémato-encéphalique (BHE), nous avons utilisé une approche in vivo / in vitro pour étudier l'effet du KD et des KB sur la BHE. Pour l'étude in vivo, le sang de souris 129Sv a été récolté afin d’effectuer le dosage du beta-hydroxybutyrate et du glucose. Les capillaires cérébraux ont été isolés de cortex des souris, et des RT-qPCR ont été effectuées pour évaluer l'expression de l'ARNm des transporteurs / récepteurs impliqués dans la synthèse et le transport de KB, de glucose et du peptide bêta amyloïde. Les analyses transcriptionnelles ont été réalisées également dans un modèle in vitro de BHE, composé de cellules endothéliales dérivées de cellules souches hématopoïétiques (BLECs) en état de cétose. Après confirmation de l'intégrité des jonctions cellulaires des BLECs, Enfin, des expériences de transport de peptides beta amyloïde fluorescents après traitement avec les KBs ont été réalisées in vitro. Nos résultats montrent que les KBs modulent la physiologie de la BBB et l'expression de certains transporteurs et récepteurs du peptide bêta amyloïde, renforcent ainsi notre motivation à décrypter les mécanismes moléculaires et cellulaires au niveau vasculaire et plus précisément au niveau de la BHE. / Given the current absence of an effective pharmacologic treatment for Alzheimer’s disease (AD), the development of alternative therapeutic approaches (such as the ketogenic diet, KD) might be considered. The KD is a low-carbohydrate, high-fat diet based on the production of ketone bodies (KBs) in the blood. In view of the KD’s beneficial effects on the central nervous system and the lack of published data on the blood brain barrier (BBB), we used an in vivo/in vitro approach to investigate the effect of the KD and KBs on the BBB. For the in vivo study, blood from 129Sv mice was assayed for beta-hydroxybutyrate and glucose dosage. Brain capillaries were isolated from mouse cortices, and RT-qPCR assays were used to evaluate the mRNA expression of transporters/receptors involved in the synthesis and transport of KBs, glucose and beta-amyloid peptide. The mRNA assays were also performed in an in vitro BBB model, based on brain-like endothelial cells (BLECs). After a ketotic state had been established and the BLECs’ integrity had been confirmed, we evaluated the mRNA expression of KB-, glucose- and amyloid-beta-related genes. Lastly, the transport of fluorescently labelled beta-amyloid peptide across the BBB was studied after treatment with KBs. Our results showed that KBs modulate the physiology of the BBB by regulating the expression of certain beta-amyloid peptide transporters/receptors and amyloid peptide-synthesizing enzymes. These data suggest that it is possible to modulate key molecular players in beta-amyloid peptide transport and synthesis at the BBB, and thus open up new perspectives for studying KB-related therapeutic approaches.
|
2 |
Étude du métabolisme cérébral au cours du vieillissement sain chez le rat : impact de la diète cétogène et de la restriction calorique / The study of brain metabolism during aging in rats: the effect of the ketogenic diet and calorie restrictionRoy, Maggie January 2014 (has links)
Résumé : Les personnes atteintes de la maladie d’Alzheimer présentent une diminution de la capture cérébrale du glucose, qui semble être impliquée dans le développement des problèmes cognitifs associés à la maladie. Toutefois, il n’y a encore aucun consensus quant à savoir si la capture cérébrale du glucose est diminuée chez les personnes âgées cognitivement saines. En condition de déficit de glucose, les cétones sont le substrat énergétique alternatif pour le cerveau. La diète cétogène, induisant une cétose légère, améliore les fonctions cognitives chez les modèles animaux et chez l’homme. Notre premier objectif était d’évaluer l’effet du vieillissement sain et de la diète cétogène sur la capture cérébrale du glucose et des cétones chez le rat. Pour cela, la capture cérébrale de radiotraceurs analogues au glucose et aux cétones a été mesurée par tomographie par émission de positons. Nos résultats montrent que la capture des deux principaux substrats énergétiques du cerveau est globalement similaire chez des rats sains jeunes et âgés, mais est plus élevée suite à la diète cétogène. L’induction d’une cétose légère pourrait corriger la diminution de capture cérébrale du glucose subvenant au cours de la maladie d’Alzheimer. Le second objectif était de déterminer l’effet d’une diète cétogène sur le métabolisme cérébral du glucose et des cétones chez le rat. Pour cela, les différents intermédiaires des voies métaboliques du glucose et des cétones ont été mesurés par spectroscopie par résonance magnétique nucléaire. Les résultats démontrent que le métabolisme du glucose et des cétones dans les cellules du cerveau est plus élevé suite à la diète cétogène. Le contenu en acide [gamma]-aminobutyrique, le principal neurotransmetteur inhibiteur, est aussi plus élevé suite à la diète cétogène, ce qui pourrait contribuer à l’effet antiépileptique de la diète cétogène. Le troisième objectif était d’évaluer l’impact d’une restriction calorique à long terme, pouvant induire une cétose légère, sur le métabolisme cérébral chez des rats âgés sains. Nos résultats montrent que, couplée à une diète à haute teneur en sucrose et faible en acides gras oméga-3, la restriction calorique à long terme chez les rats âgés ne modifie pas le profil des métabolites et des acides gras du cerveau. La déficience en acides gras oméga-3 et la surcharge de sucrose pourraient empêcher une grande partie des effets bénéfiques de la restriction calorique au cerveau.//Abstract : Alzheimer’s disease is associated with a reduction of brain glucose uptake, which may be involved in the development of the cognitive problems associated with the disease. It is however unclear whether brain glucose uptake is decreased in the cognitively healthy elderly. Under conditions of glucose deficit, ketones are the alternative brain energy substrate. A mild ketosis, induced by the ketogenic diet, improves cognitive functions in animal models and humans. Our first objective was to evaluate the effect of healthy aging and of a ketogenic diet on brain glucose and ketone uptake in the rat. Brain uptake of radiotracers analogous to glucose and ketones was measured by positron emission tomography. Our results show that the uptake of the brains two main energy substrates is generally similar in healthy young and aged rats, but is higher under the ketogenic diet. The induction of a mild ketosis may compensate the reduction of brain glucose uptake occurring in Alzheimer’s disease. The second objective was to assess the effect of a ketogenic diet on brain glucose and ketone metabolism in the rat. Metabolic pathway intermediates of glucose and ketones were measured by nuclear magnetic resonance spectroscopy. Results show that glucose and ketone metabolism in brain cells is higher under the ketogenic diet. Content of [gamma]-aminobutyric acid, the main inhibitory neurotransmitter, is also higher under the ketogenic diet, which could contribute to the antiepileptic effect of the ketogenic diet. The third objective was to evaluate the effect of a long-term calorie restriction, which may induce a mild ketosis, on brain metabolism in healthy aged rats. Our results show that, in conjunction with a diet enriched in sucrose and low in omega-3 fatty acids, long-term calorie restriction in aged rats does not change brain metabolite and fatty acid profiles. Omega-3 fatty acid deficiency and an overload of sucrose may prevent the beneficial effects associated with calorie restriction in the brain.
|
3 |
Etude de la dysfonction cellulaire et moléculaire du syndrome mitochondrial MELAS. / Study of cellular and molecular dysfunction of mitochondrial MELAS syndromGeffroy, Guillaume 29 September 2017 (has links)
Chaque mitochondrie contient son propre génome en de multiples copies d’ADN. Les mutations de l'ADN mitochondriales (ADNmt) sont responsables de sévères dysfonctions de la chaîne respiratoire. Le ratio entre la proportion de copies sauvages et mutantes, qualifiée d'hétéroplasmie, détermine la sévérité de la pathologie. Une des mutations les plus répandues de l'ADNmt est la mutation m.3243A>G, affectant l'ARN de transfert de la leucine. Ce variant est à l'origine du syndrome mitochondrial MELAS. Il n’existe à l’heure actuelle aucun traitement curatif pour ce syndrome. Nous avons développé une série de cybrides neuronaux porteurs de la mutation m.3243A>G a différents taux d’hétéroplasmie. Nous avons mis en évidence que de fort taux de mutations sont responsables de sévères dysfonctions de la chaîne respiratoire, d’un défaut d’assemblage précoce du complexe I ainsi qu’une réduction du renouvellement mitochondrial. Différentes stratégies métaboliques ont été employées pour compenser ces déficits. L’exposition des cellules a une restriction glucidique ou à la diète cétogène associant réduction glucidique et ajout de corps cétoniques, améliore significativement les fonctions mitochondriales après 4 semaines. Ces effets passent notamment par une restauration de l’assemblage et de l’activité du complexe I médiée ces interventions métaboliques. Par ailleurs, l’administration de la diète cétogène à un patient atteint du syndrome MELAS a déjà montré des résultats encourageants. De telles approches pourraient alors, constituées des stratégies thérapeutiques futures dans le traitement du syndrome MELAS et des maladies mitochondriales. / Each mitochondrion contains its own genome in multiple copies. Mitochondrial DNA (mtDNA) mutations are responsible for respiratory chain defects. The ratio of mutant to normal mtDNA, a condition known as heteroplasmy, may determine the disease severity. The m.3243A>G mutation, which affects the leucine tRNA, is one of the most common mtDNA mutation. This variant is responsible for the MELAS syndrome, a neurodegenerative disease, characterized by pseudostrokes. Unfortunately there are no curative treatments for MELAS syndrome. We have developed series of cybrid neuronal cells lines carrying the m.3243A>G mutation with different mutant loads, within the same nuclear background. High mutation load is associated to severe respiratory chain dysfunction, an early complex I assembly defect and a mitochondrial turn-over deficit. Different strategies were used to compensate the defects in the mutant cells. Cell exposure to low glucose or ketogenic diet, combining glucose reduction and the addition of ketone bodies, greatly improves mitochondrial functions after 4 weeks. Those effects are linked to a significant increase of complex I assembly and activity mediated by those metabolic interventions. In addition, a MELAS patient treated with ketogenic diet showed significant clinical improvement. Thus, metabolic approaches may constitute promising therapeutic strategies against MELAS syndrome and mitochondrial disorders.
|
Page generated in 0.0225 seconds