• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 1
  • Tagged with
  • 14
  • 14
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Recycling Waste Solar Panels (c-Si & CdTe) in Sweden

Nekouaslazadeh, Alireza January 2021 (has links)
Solar energy industries are one of the fastest-growing industries in the global energy market. Between 2018 and 2019, installed capacity in Sweden increased by 70%. This is due to a combination of declining PV module and inverter costs, as well as  increased conversion to fossil-free energy production to mitigate greenhouse gas emissions. In fact, solar PVs have a 25-year life span, and soon many deployed PVs would soon reach their end of life (EoL), it is, therefore, important to organize for the EoL of PVs in order to recover precious resources and recycle PV modules in a sustainable manner. Currently, less than 10% of global solar cell waste is recycled, due to the lack of incentives for recycling in most countries. In the European Union, used-up modules are governed by the WEEE (Waste Electrical and Electronic Equipment) Directive, which requires the collection of 85% of solar cell waste, with at least 80% of the waste being prepared for reuse or recycling. Solar cell waste has not amounted to significant volumes in Sweden, due to the lack of no known systems for recycling. Used-up modules are currently collected and managed as electronic waste in one of two approved collection systems in Sweden. The aim of this thesis is to analyze and assess methods of recycling waste solar panels in Sweden and is it economically viable to set up a solar waste recycling center before it reaches the right amount of waste. Moreover, the main focus is on the analysis and comparison of the environmental impacts of various recycling methods for crystalline silicon (c-Si) and cadmium telluride (CdTe) panels. To recycle solar panel waste, the elements of these panels must be assessed from both an economic point of view as well as environmental impacts. Today, the most common PV panels in the global market and also Sweden are c-Si and CdTe types. The results showed except for the pyrolysis method, the environmental impacts of both c-Si and CdTe PV panels from the thermal-based recycling methods, are lower than chemical methods. Furthermore, the extraction of Al, Si, and glass from c-Si and the extraction of glass from CdTe has a less environmental impact than the current techniques used in the recycling of PV panels. Finally, in this study, we revealed which materials can be prioritized for maximum economic and environmental advantages from recycling. In c-Si modules, these are Ag, Al, Si, and glass and in CdTe modules, these are Te, Cu, and glass. Currently, investing in a new solar module recycling center in Sweden is not economically viable. Because the possibility of such an investment requires economic and political incentives. Given that by 2042 the volume of Swedish solar waste will not reach the minimum level of profitability to build a new specialized center for the recycling of solar modules, the best decision is to modify the existing plants in Sweden to recover expensive and vital materials.
12

Silicium de type n pour cellules à hétérojonctions : caractérisations et modélisations / N type silicon for heterojunctions photovoltaic solar cells : characterizations and modeling

Favre, Wilfried 30 September 2011 (has links)
Les cellules à hétérojonctions de silicium fabriquées par croissance de couches minces de silicium amorphe hydrogéné (a-Si :H) à basse température sur des substrats de silicium cristallin (c-Si) peuvent atteindre des rendements de conversion photovoltaïque élevés (η=23 % démontré). Les efforts de recherche ayant principalement été orientés vers le cristallin de type p jusqu'à présent en France, ce travail s'attache à l'étude du type n pour d'une part déterminer les performances auxquelles s'attendre avec cette nouvelle filière et d'autre part les améliorer. Pour cela, nous avons mis en œuvre des techniques de caractérisation des matériaux composant la structure et de l’interface (a-Si :H/c-Si) couplées à des outils de simulations numériques afin mieux comprendre les phénomènes de transport électronique. Nous nous sommes également intéressés aux cellules à hétérojonctions avec substrats de silicium multicristallin de type n, le silicium multicristallin étant le matériau le plus répandu actuellement dans la fabrication des cellules photovoltaïques. / In this thesis we focus on the silicon heterostructure combining thin films amorphous silicon (a-Si :H) deposited at low temperature on crystalline silicon (c-Si) substrates. We study the different materials and the interface between them through both characterizations, modelling and numerical simulations. The goal is to better understand the influence of the different parameters (doping level, defects density, band offset, ...) on the photovoltaic solar cell's performances in order to get them improved. Structures with multicrystalline silicon substrates are also studied.
13

Défauts et diffusion dans le silicium amorphe

Diop, Ousseynou 08 1900 (has links)
Nous avons observé une augmentation ‘’transient’’du taux de cristallisation interfacique de l’a-Si lorsqu’on réimplante du Si à proximité de l’interface amorphe/cristal. Après amorphisation et traitement thermique à 650°C pendant 5s de la couche a-Si crée par implantation ionique, une partie a été réimplantée. Les défauts produits par auto-réimplantation à 0.7MeV se trouvent à (302±9) nm de l’interface initiale. Cela nous a permis d’étudier d’avantage la variation initiale de la vitesse SPE (Épitaxie en phase solide). Avec des recuit identiques de 4h à 500°C, nous avons déterminé les positions successives des interfaces et en déduit les taux de cristallisation SPE. La cristallisation débute à l’interface et continue graduellement vers la surface. Après le premier recuit, (252±11) nm s’est recristallisé dans la zone réimplantée soit un avancement SPE de 1.26x10^18at./cm2. Cette valeur est environ 1.50 fois plus importante que celle dans l’état relaxé. Nous suggérons que la présence de défauts à proximité de l’interface a stimulé la vitesse initiale. Avec le nombre de recuit, l’écart entre les vitesses diminue, les deux régions se cristallisent presque à la même vitesse. Les mesures Raman prises avant le SPE et après chaque recuit ont permis de quantifier l’état de relaxation de l’a-Si et le transfert de l’état dé-relaxé à relaxé. / We observed a ‘’transient’’ increase of planar crystallization rate of a-Si when one reimplanted Si near the interface amorphous / crystal. After amorphization and heat treatment at 650°C for 5s, one part has been re-implanted. The defects produced at 0.7 MeV by self-re-implantation are located at (302±9) nm of the initial interface. This allows us to better study the initial variation of SPE speed (solid phase epitaxy). With recrystallisation anneals at 500±4°C for 4h, we have determined the successive positions of the interfaces and have deduced the SPE recrystallization rate. Crystallization began at the interface and continues gradually to the surface. After the first annealing, (252±11)nm was recrystallized in the re-implanted state. That means 1.26x10^18at./cm2 SPE enhancement. This value is approximately 1.50 times greater than that in the relaxed state. We suggest that the presence of defects near the interface stimulate the speed. Raman measurements taken after each annealing allowed us to know the transfer of the un-relaxed state to the relaxed state. After the number of anneals treatments, both areas progress almost at the same speed / Dans ce travail nous avons étudié le phénomène de diffusion du cuivre et de l’argent dans a-Si en présence de l’hydrogène à la température de la pièce et de recuit. Une couche amorphe de 0.9μm d’épaisseur a été produite par implantation de 28Si+ à 500 keV sur le c-Si (100). Après celle-ci, on procède à l’implantation du Cu et de l’Ag. Un traitement thermique a produit une distribution uniforme des impuretés dans la couche amorphe et la relaxation de défauts substantiels. Certains défauts dans a-Si sont de type lacune peuvent agir comme des pièges pour la mobilité du Cu et de l’Ag. L’hydrogène implanté après traitement thermique sert à dé-piéger les impuretés métalliques dans certaines conditions. Nous n’avons détecté aucune diffusion à la température de la pièce au bout d’un an, par contre un an après à la température de recuit (1h à 450°C) on observe la diffusion de ces métaux. Ce qui impliquerait qu’à la température de la pièce, même si l’hydrogène a dé-piégé les métaux mais ces derniers n’ont pas pu franchir une barrière d’énergie nécessaire pour migrer dans le réseau. / In this work we studied the diffusion phenomenon of copper and silver in a-Si in the presence of hydrogen at room temperature and annealing temperature. The 0.9 μm -thick a-Si layers were formed by ion implantation 28Si + at 500 keV on c-Si (100). After this Cu ions and Ag ions were implanted at 90keV.The heat treatment produces a uniform distribution of impurities in the amorphous layer and the relaxation of substantial defects. Vacancies defects in a-Si can act as traps for the mobility of Cu and Ag. Hydrogen implanted is used to de-trap metal impurities such as Cu and Ag. However we did not detect any diffusion at room temperature during 1 year, but after one year at the annealing temperature (450°C for 1h) we observe the distribution of these metals. Implying that the room at temperature, although the hydrogen de-trapping metals but they could not crossed an energy barrier required to migrate in the network.
14

Défauts et diffusion dans le silicium amorphe

Diop, Ousseynou 08 1900 (has links)
Nous avons observé une augmentation ‘’transient’’du taux de cristallisation interfacique de l’a-Si lorsqu’on réimplante du Si à proximité de l’interface amorphe/cristal. Après amorphisation et traitement thermique à 650°C pendant 5s de la couche a-Si crée par implantation ionique, une partie a été réimplantée. Les défauts produits par auto-réimplantation à 0.7MeV se trouvent à (302±9) nm de l’interface initiale. Cela nous a permis d’étudier d’avantage la variation initiale de la vitesse SPE (Épitaxie en phase solide). Avec des recuit identiques de 4h à 500°C, nous avons déterminé les positions successives des interfaces et en déduit les taux de cristallisation SPE. La cristallisation débute à l’interface et continue graduellement vers la surface. Après le premier recuit, (252±11) nm s’est recristallisé dans la zone réimplantée soit un avancement SPE de 1.26x10^18at./cm2. Cette valeur est environ 1.50 fois plus importante que celle dans l’état relaxé. Nous suggérons que la présence de défauts à proximité de l’interface a stimulé la vitesse initiale. Avec le nombre de recuit, l’écart entre les vitesses diminue, les deux régions se cristallisent presque à la même vitesse. Les mesures Raman prises avant le SPE et après chaque recuit ont permis de quantifier l’état de relaxation de l’a-Si et le transfert de l’état dé-relaxé à relaxé. / We observed a ‘’transient’’ increase of planar crystallization rate of a-Si when one reimplanted Si near the interface amorphous / crystal. After amorphization and heat treatment at 650°C for 5s, one part has been re-implanted. The defects produced at 0.7 MeV by self-re-implantation are located at (302±9) nm of the initial interface. This allows us to better study the initial variation of SPE speed (solid phase epitaxy). With recrystallisation anneals at 500±4°C for 4h, we have determined the successive positions of the interfaces and have deduced the SPE recrystallization rate. Crystallization began at the interface and continues gradually to the surface. After the first annealing, (252±11)nm was recrystallized in the re-implanted state. That means 1.26x10^18at./cm2 SPE enhancement. This value is approximately 1.50 times greater than that in the relaxed state. We suggest that the presence of defects near the interface stimulate the speed. Raman measurements taken after each annealing allowed us to know the transfer of the un-relaxed state to the relaxed state. After the number of anneals treatments, both areas progress almost at the same speed / Dans ce travail nous avons étudié le phénomène de diffusion du cuivre et de l’argent dans a-Si en présence de l’hydrogène à la température de la pièce et de recuit. Une couche amorphe de 0.9μm d’épaisseur a été produite par implantation de 28Si+ à 500 keV sur le c-Si (100). Après celle-ci, on procède à l’implantation du Cu et de l’Ag. Un traitement thermique a produit une distribution uniforme des impuretés dans la couche amorphe et la relaxation de défauts substantiels. Certains défauts dans a-Si sont de type lacune peuvent agir comme des pièges pour la mobilité du Cu et de l’Ag. L’hydrogène implanté après traitement thermique sert à dé-piéger les impuretés métalliques dans certaines conditions. Nous n’avons détecté aucune diffusion à la température de la pièce au bout d’un an, par contre un an après à la température de recuit (1h à 450°C) on observe la diffusion de ces métaux. Ce qui impliquerait qu’à la température de la pièce, même si l’hydrogène a dé-piégé les métaux mais ces derniers n’ont pas pu franchir une barrière d’énergie nécessaire pour migrer dans le réseau. / In this work we studied the diffusion phenomenon of copper and silver in a-Si in the presence of hydrogen at room temperature and annealing temperature. The 0.9 μm -thick a-Si layers were formed by ion implantation 28Si + at 500 keV on c-Si (100). After this Cu ions and Ag ions were implanted at 90keV.The heat treatment produces a uniform distribution of impurities in the amorphous layer and the relaxation of substantial defects. Vacancies defects in a-Si can act as traps for the mobility of Cu and Ag. Hydrogen implanted is used to de-trap metal impurities such as Cu and Ag. However we did not detect any diffusion at room temperature during 1 year, but after one year at the annealing temperature (450°C for 1h) we observe the distribution of these metals. Implying that the room at temperature, although the hydrogen de-trapping metals but they could not crossed an energy barrier required to migrate in the network.

Page generated in 0.0397 seconds