• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INTEGRATING PHOSPHOLIPID AND CYCLIC NUCLEOTIDE SIGNALING: ROLES OF PHOSPHODIESTERASES AS ENZYMES AND TETHERS

WILSON, LINDSAY SHEA 28 June 2011 (has links)
Cells of the cardiovascular system translate incoming extracellular signals from hormones and drugs through binding of cell surface receptors, and activation of intracellular signaling cascades allowing modulation of specific cellular function. cAMP and cGMP are ubiquitous second messengers that activate specific signaling machinery used to promote or inhibit cellular functions such as cell migration, cell adhesion and proliferation. Increases in intracellular cAMP or cGMP levels occurs through activation of adenylyl cyclase (cAMP) or guanylyl cyclase (cGMP) or by inhibition of the cAMP and cGMP hydrolyzing enzymes, cyclic nucleotide phosphodiesterases (PDEs). Cyclic nucleotides achieve signaling specificity through compartmentation, a mechanism allowing effective regulation of cAMP or cGMP signaling in discrete parts of the cell in a spatial and temporal manner. Cells of the cardiovascular system such as platelets, vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs) maintain cyclic nucleotide compartmentation through coordinating signaling complexes containing a cAMP or cGMP effector protein and PDEs. Studies reported in this thesis demonstrate that human platelets, VECs and VSMCs each contain distinct cyclic nucleotide signaling complexes, and that based on their composition and selective subcellular localization, regulate specific cellular functions. In platelets, subcellular localization of PDE5 results in differential regulation of PDE5 and selective regulation of Ca2+ release from endoplasmic reticulum stores, an initial step in platelet aggregation and provides a potential therapeutic target in preventing thrombosis. VECs utilize multiple signaling systems to regulate cellular function including cAMP signaling pathways and modification of phosphatidylinositols. These studies demonstrate that a PDE3B-based signaling complex allows integration of both cAMP and phosphatidylinositol-3-kinase-γ (PI3Kγ) signals resulting in increased cell adhesion and cell spreading. Finally, studies in VSMCs demonstrate that PDE5 localization in cells allows cAMP/cGMP cross talk through PDE5 and PDE3A. These results are discussed in the context of further understanding the role of PDEs in mediating cAMP and cGMP signaling and modulation of cell function in cells of the cardiovascular system. / Thesis (Ph.D, Pathology & Molecular Medicine) -- Queen's University, 2011-06-28 13:31:51.428
2

Die Rolle der Phosphodiesterase 2 im Herzen / The role of phosphodiesterase 2 in the heart

Lämmle, Simon 14 November 2014 (has links)
Herzinsuffizienz ist ein weltweites Gesundheitsproblem mit hoher Morbidität und Mortalität und immer noch schlechter Prognose. Ein charakteristisches Merkmal der molekularen und damit verbundenen strukturellen Veränderungen, die der terminalen Insuffizienz vorangehen ist die durch Desensitivierungsmechanismen vermittelte Abnahme des beta-adrenergen (β-AR) Signalmoleküls zyklisches Adenosinmonophosphat (cAMP) auf der einen Seite und der gleichzeitigen Zunahme des von natriuretischen Peptiden (NP) und Stickstoffmonoxid (NO) generierten zyklischen Guanosinmonophosphat (cGMP) auf der anderen Seite. Während hohe cAMP-Spiegel im Herzen als schädlich gelten, werden cGMP-abhängige Signalkaskaden vorwiegend als protektiv verstanden. Amplitude, Lokalisation und Halbwertszeit beider Signalmoleküle werden durch spezifische Enzyme, den Phosphodiesterasen (PDE) reguliert. Unter der PDE-Superfamilie wird die Isoform PDE2 als einzige von cGMP aktiviert, um dann verstärkt cAMP abzubauen und steht damit im Zentrum eines negativen Crosstalks dieser beiden Signalwege. PDE2 ist sowohl in der humanen als auch der experimentellen Herzinsuffizienz hochreguliert und scheint dort am β-AR Desensitivierungsprozess beteiligt zu sein. Im Rahmen dieser Arbeit wurde die pathophysiologische Rolle der PDE2 im Herzen näher charakterisiert. Es wird gezeigt, dass die PDE2 nicht nur in Kardiomyozyten, sondern auch in kardialen Fibroblasten exprimiert wird. In Fibroblasten inhibieren cAMP/cGMP-Signalwege die Transformation von kardialen Fibroblasten (CF) zu Myofibroblasten (MyoCF), einem zellulären Phänotyp, der unter anderem mit der persistenten Fibrotisierung des erkrankten Herzgewebes in Verbindung gebracht wird. In CF führte eine Überexpression von PDE2 zu eine starken Abnahme der basalen und β2-AR-vermittelten cAMP-Synthese und war ausreichend, um in Abwesenheit exogener, pro-fibrotischer Stimuli die Transformation zum MyoCF zu induzieren. In Übereinstimmung zeigten funktionale Analysen mit künstlich hergestelltem Bindegewebe aus PDE2-überexprimierenden CF eine deutliche Zunahme der Gewebssteifigkeit. PDE2 übte keinen Einfluss auf basale oder durch das atriale NP generiertes cGMP aus und reduzierte nur partiell die NO-induzierte cGMP-Akkumulation. Interessanterweise waren beide Stimuli in der Lage, trotz niedriger cAMP-Spiegel die PDE2-induzierte CF-Transformation zum MyoCF zu verhindern und lassen daher eine Redundanz dieser beiden sonst so gegensätzlichen Signalwege vermuten. Zur Untersuchung von PDE2 in Kardiomyozyten wurde ein transgenes (TG) Mausmodell mit spezifischer kardialer Überexpression herangezogen. Die Basalcharakterisierung zeigte eine erniedrigte Herzfrequenz (HR) mit kompensatorisch erhöhter, basaler Kontraktionskraft, sowie eine verminderte Maximalantwort bezüglich der HR nach akuter β-AR Stimulation. Auf molekularer Ebene war dieser Phänotyp mit einer verminderten Phosphorylierung verschiedener β-AR Zielstrukturen wie Troponin I, Phospholamban und Ryanodinrezeptor-2 assoziiert. Langzeitstudien belegten, dass eine Überexpression von PDE2 keine pathologischen Konsequenzen hat, sondern im Gegenteil die durchschnittliche Lebensspanne der Tiere eher verlängerte. Erste Studien im Herzinsuffizienzmodel der transversalen Aortenkonstriktion (TAC) zeigten bisher eine beständig erniedrigte HR und verminderte Wanddicken bei allerdings vergleichbarer Abnahme der kardialen Kontraktionskraft. Trotz der klaren Befunde und neuen Erkenntnisse über die vielfältige Rolle der PDE2 im Herzen lässt sich bisher noch nicht klar belegen, ob eine zusätzliche Aktivierung von myokardialen PDE2 tatsächlich im Sinne einer intrazellulären β-AR-Blockade die Progression zur Herzinsuffizienz verlangsamen oder verhindern könnte. Weitere darauf aufbauende Untersuchungen, wie z.B. eine akut induzierbare Aktivierung bzw. Deaktivierung in experimentellen Herzinsuffizienzmodellen könnten den Weg für die Entwicklung klinisch anwendbarer Ansätze zur therapeutischen Modulation dieser viel versprechenden Zielstruktur ebnen.
3

In vivo FLIM-FRET as a novel technique to assess cAMP and cGMP in the intact zebrafish heart

Janßen, Julia Annika 05 December 2017 (has links)
Introduction: 23 million patients worldwide suffer from heart failure. These patients depend on cardiac research, because cardiac research enables the development of new therapeutic strategies and –targets. In cardiomyocytes, the compartmentalization of cAMP and cGMP depends on many factors. T-tubuli and PDEs are responsible for the division of cells in microdomains in which localized and specific cAMP and cGMP-signaling occurs. The aim of this thesis was to develop a method to answer the open questions that remain about the physiological and pathophysiological significance of cAMP/cGMP compartmentalization. Methods: I used the zebrafish as a model, because the transparency of zebrafish larvae enabled non-invasive fluorescent imaging in cardiomyocytes in the living animal. I cloned the Fluorescence Resonance Energy Transfer (FRET) sensors EPAC1-camps for cAMP and cGi500 for cGMP and injected them into zebrafish fertilized embryos. Then I used the F0 generation for Fluorescence Lifetime Imaging (FLIM) -FRET-measurements of cAMP and cGMP. Ca2+ is an important downstream mediator of cAMP and cGMP, because Ca2+ regulates cardiac contraction. Therefore, I also cloned the Ca2+ sensor GCaMP6 and used the dye Fluo-4 AM to include intracellular Ca2+ in the imaging. Results: The cloned sensors for cAMP, cGMP and Ca2+ were successfully injected into the zebrafish and showed expression in individual cardiomyocytes. I developed a protocol to mount the living zebrafish embryos and to measure intracellular cAMP and cGMP with FLIM-FRET in vivo with high spatial resolution. I characterized the sensors in their functionality by showing that the sensors react to changes in intracellular concentrations of cAMP and cGMP. The results of this study include evidence that zebrafish have mechanisms that lead to cAMP/cGMP compartmentalization in the absence of T-tubuli, and these mechanisms keep compartmentalization constant even under extreme cAMP or cGMP increasing drug treatment. Furthermore, I imaged intracellular Ca2+ by confocal microscopy and developed a protocol to use Fluo-4 AM for Ca2+ imaging. Conclusion: The method used in this thesis should allow the investigation of subcellular cAMP/cGMP compartmentalization and Ca2+ and to subsequently answer open questions in the field, for example whether a change of cAMP compartmentalization leads to the pathological phenotypes of cardiac disease or if a changed compartmentalization of cAMP in cardiac disease influences Ca2+ concentrations and therefore contraction. Additionally, this method can be used to learn more about cAMP, cGMP und Ca2+ during regeneration in the heart, because the zebrafish cardiomyocytes can regenerate. / Einleitung: Weltweit sind mehr als 23 Millionen unter Herzinsuffizienz leidende Patienten auf die kardiologische Grundlagenforschung angewiesen, da diese die Voraussetzung für eine bessere Versorgung durch adaptierte und neue Behandlungswege schafft. In Kardiomyozyten hängt die Kompartimentierung von cAMP und cGMP von vielen Faktoren ab. T-Tubuli und PDEs werden unter anderem für die Aufteilung der Zellen in Mikrodomänen, in denen lokalisierte und spezifische cAMP- und cGMP-Signalgebung stattfinden kann, verantwortlich gemacht. Das Ziel dieser Arbeit war die Etablierung einer Methode, mithilfe derer offene Fragen bezüglich der physiologischen und insbesondere der pathophysiologischen Relevanz der cAMP- und cGMP Kompartimentierung beantwortet werden können. Methode: Als Modell diente der Zebrafisch, da die Transparenz von Zebrafisch Embryonen eine nicht-invasive Bildgebung von Fluoreszenz in Kardiomyozyten im lebenden Tier ermöglicht. Dafür klonierte ich die Förster Resonance Energy Transfer (FRET) -Sensoren EPAC1-camps als cAMP-Sensor und cGi500 als cGMP-Sensor und injizierte diese in befruchtete Zebrafisch Embryonen. Anschließend benutzte ich die F0-Generation für Fluorescence Lifetime Imaging (FLIM) -FRET-Messungen von cAMP und cGMP. Da Ca2+ als wichtiger downstream Mediator von cAMP und cGMP die kardiale Kontraktion reguliert, klonierte ich außerdem den Ca2+-Sensor GCaMP6 und benutzte den Farbstoff Fluo-4 AM, um intrazelluläres Ca2+ darzustellen. Ergebnisse: Die klonierten Sensoren für cAMP, cGMP und Ca2+ konnten erfolgreich in den Zebrafisch injiziert werden und zeigten alle Expression in einzelnen Kardiomyozyten. Ich entwickelte ein Protokoll, dass die Fixierung von lebenden Zebrafisch Embryonen und nachfolgender Bildgebung von cAMP und cGMP mit hoher zellulärer Auflösung mit FLIM-FRET in vivo erlaubte. Ich konnte eine funktionelle Charakterisierung der Sensoren durchführen, indem ich zeigte, dass sie auf Konzentrationsänderungen von intrazellulärem cAMP und cGMP reagieren sowie zeigen, dass Zebrafische trotz fehlender T-Tubuli eine signifikante cAMP- und cGMP Kompartimentierung aufweisen, auch unter extremen Bedingungen nach Gabe von cAMP/cGMP stimulierenden Substanzen in hoher Dosierung. Ich konnte zudem subzelluläres Ca2+ durch konfokale Mikroskopie bildgebend darstellen und entwickelte ein Protokoll, um mit Fluo-4 AM eine schnelle Möglichkeit zu haben, Ca2+ mit in die Messungen einzubeziehen. Ausblick: Die in dieser Arbeit benutzte Methode bietet eine gute Möglichkeit, subzelluläre cAMP- und cGMP-Kompartimentierung und Ca2+ zu untersuchen und damit zum Beispiel die Fragen zu beantworten, ob eine veränderte cAMP/cGMP Kompartimentierung zu Herzkrankheiten wie Hypertrophie führt oder ob eine veränderte cAMP Kompartimentierung den zellulären Ca2+ Haushalt und damit die kardiale Kontraktion beeinflusst. Darüber hinaus kann das von mir etablierte Protokoll dazu genutzt werden, mehr über cAMP, cGMP und Ca2+ während der Regeneration im Herzen zu lernen, da der Zebrafisch über ausgeprägte Regenerationsfähigkeiten verfügt.

Page generated in 0.027 seconds