• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Holoscopic 3D imaging and display technology : camera/processing/display

Swash, Mohammad Rafiq January 2013 (has links)
Holoscopic 3D imaging “Integral imaging” was first proposed by Lippmann in 1908. It has become an attractive technique for creating full colour 3D scene that exists in space. It promotes a single camera aperture for recording spatial information of a real scene and it uses a regularly spaced microlens arrays to simulate the principle of Fly’s eye technique, which creates physical duplicates of light field “true 3D-imaging technique”. While stereoscopic and multiview 3D imaging systems which simulate human eye technique are widely available in the commercial market, holoscopic 3D imaging technology is still in the research phase. The aim of this research is to investigate spatial resolution of holoscopic 3D imaging and display technology, which includes holoscopic 3D camera, processing and display. Smart microlens array architecture is proposed that doubles spatial resolution of holoscopic 3D camera horizontally by trading horizontal and vertical resolutions. In particular, it overcomes unbalanced pixel aspect ratio of unidirectional holoscopic 3D images. In addition, omnidirectional holoscopic 3D computer graphics rendering techniques are proposed that simplify the rendering complexity and facilitate holoscopic 3D content generation. Holoscopic 3D image stitching algorithm is proposed that widens overall viewing angle of holoscopic 3D camera aperture and pre-processing of holoscopic 3D image filters are proposed for spatial data alignment and 3D image data processing. In addition, Dynamic hyperlinker tool is developed that offers interactive holoscopic 3D video content search-ability and browse-ability. Novel pixel mapping techniques are proposed that improves spatial resolution and visual definition in space. For instance, 4D-DSPM enhances 3D pixels per inch from 44 3D-PPIs to 176 3D-PPIs horizontally and achieves spatial resolution of 1365 × 384 3D-Pixels whereas the traditional spatial resolution is 341 × 1536 3D-Pixels. In addition distributed pixel mapping is proposed that improves quality of holoscopic 3D scene in space by creating RGB-colour channel elemental images.
2

FUSE : AI-Assisted Guidance and Documentation System for Crashed Vehicle Handling

Altun, Sinan January 2022 (has links)
As a response to the zero emission targets set for 2050, the number of electric and alternative fuel vehicles is increasing drastically. While those vehicles are not more likely to burn compared to vehicles with combustion engines, there are numerous accidents where the batteries ignite, the firefighters couldn't handle them properly due to lack of experience with new cars and on-site real-time information. It becomes even harder as there are not widely accepted procedures. Extrication has also become very hard due to the structural changes in the new vehicles. The structural variety of vehicles makes it harder for firefighters to properly respond to car accidents. The FUSE system provides AI-assisted guidance to the firefighters while responding to car crashes and documents it to improve the AI and the firefighters for future cases. FUSE is an AI-assisted handheld device and a system designed for firefighters to be used for car accidents. FUSE has a set of sensors and cameras together with flashlights and a laser cross generator. It’s not only packed with sensors but a powerful AI which has the access to a database of 3D models and rescue information of the vehicles together with the real-world knowledge. It compares 3D data of vehicles with real-world scans and generates recommendations in augmented reality form.
3

Analys av punktmoln i tre dimensioner

Rasmussen, Johan, Nilsson, David January 2017 (has links)
Syfte: Att ta fram en metod för att hjälpa mindre sågverk att bättre tillvarata mesta möjliga virke från en timmerstock. Metod: En kvantitativ studie där tre iterationer genomförts enligt Design Science. Resultat: För att skapa en effektiv algoritm som ska utföra volymberäkningar i ett punktmoln som består av cirka två miljoner punkter i ett industriellt syfte ligger fokus i att algoritmen är snabb och visar rätt data. Det primära målet för att göra algoritmen snabb är att bearbeta punktmolnet ett minimalt antal gånger. Den algoritm som uppfyller delmålen i denna studie är Algoritm C. Algoritmen är både snabb och har en låg standardavvikelse på mätfelen. Algoritm C har komplexiteten O(n) vid analys av delpunktmoln. Implikationer: Med utgångspunkt från denna studies algoritm skulle det vara möjligt att använda stereokamerateknik för att hjälpa mindre sågverk att bättre tillvarata mesta möjliga virke från en timmerstock. Begränsningar: Studiens algoritm har utgått från att inga punkter har skapats inuti stocken vilket skulle kunna leda till felplacerade punkter. Om en stock skulle vara krokig överensstämmer inte stockens centrum med z-axelns placering. Detta är något som skulle kunna innebära att z-värdet hamnar utanför stocken, i extremfall, vilket algoritmen inte kan hantera. / Purpose: To develop a method that can help smaller sawmills to better utilize the greatest possible amount of wood from a log. Method: A quantitative study where three iterations has been made using Design Science. Findings: To create an effective algorithm that will perform volume calculations in a point cloud consisting of about two million points for an industrial purpose, the focus is on the algorithm being fast and that it shows the correct data. The primary goal of making the algorithm quick is to process the point cloud a minimum number of times. The algorithm that meets the goals in this study is Algorithm C. The algorithm is both fast and has a low standard deviation of the measurement errors. Algorithm C has the complexity O(n) in the analysis of sub-point clouds. Implications: Based on this study’s algorithm, it would be possible to use stereo camera technology to help smaller sawmills to better utilize the most possible amount of wood from a log. Limitations: The study’s algorithm assumes that no points have been created inside the log, which could lead to misplaced points. If a log would be crooked, the center of the log would not match the z-axis position. This is something that could mean that the z-value is outside of the log, in extreme cases, which the algorithm cannot handle.

Page generated in 0.0659 seconds