• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise estrutural de redes complexas modulares por meio de caminhadas auto-excludentes / Structural analysis of modular complex networks through self avoiding walk

Bagnato, Guilherme de Guzzi 27 April 2018 (has links)
O avanço das pesquisas em redes complexas proporcionou desenvolvimentos significativos para a compreensão de sistemas complexos. Uma rede complexa é modelada matematicamente por meio de um grafo, onde cada vértice representa uma unidade dinâmica e suas interações são simbolizadas por um conjunto de arestas. Para se determinar propriedades estruturais desse sistema, caminhadas aleatórias tem-se mostrado muito úteis pois dependem apenas de informações locais (vértices vizinhos). Entre elas, destaca-se o passeio auto-excludente (SAW) que possui a restrição de não visitar um vértice que já foi alcançado, ou seja, apresenta memória do caminho percorrido. Por este motivo o SAW tem apresentado melhores resultados do que caminhantes sem restrição, na exploração da rede. Entretanto, por não se tratar de um processo Markoviano ele apresenta grande complexidade analítica, tornando indispensável o uso de simulações computacionais para melhor compreensão de sua dinâmica em diferentes topologias. Mesmo com as dificuldades analíticas, o SAW se tornou uma ferramenta promissora na identificação de estruturas de comunidades. Apesar de sua importância, detecção de comunidades permanece um problema em aberto devido à alta complexidade computacional associada ao problema de optimização, além da falta de uma definição formal do significado de comunidade. Neste trabalho, propomos um método de detecção de comunidades baseado em SAW para extrair uma estrutura de comunidades da rede otimizando o parâmetro modularidade. Combinamos características extraídas desta dinâmica com a análise de componentes principais para posteriormente classificar os vértices em grupos por meio da clusterização hierárquica aglomerativa. Para avaliar a performance deste novo algoritmo, comparamos os resultados com outras quatro técnicas populares: Girvan-Newman, Fastgreedy, Walktrap e Infomap, aplicados em dois tipos de redes sintéticas e nove redes reais diversificadas e bem conhecidas. Para os benchmarks, esta nova técnica produziu resultados satisfatórios em diferentes combinações de parâmetros, como tamanho de rede, distribuição de grau e número de comunidades. Já para as redes reais, obtivemos valores de modularidade superior aos métodos tradicionais, indicando uma distribuição de grupos mais adequada à realidade. Feito isso, generalizamos o algoritmo para redes ponderadas e digrafos, além de incorporar metadados à estrutura topológica a fim de melhorar a classificação em grupos. / The progress in complex networks research has provided significant understanding of complex systems. A complex network is mathematically modeled by a graph, where each vertex represents a dynamic unit and its interactions are symbolized by groups of edges. To determine the system structural properties, random walks have shown to be a useful tool since they depend only on local information (neighboring vertices). Among them, the selfavoiding walk (SAW) stands out for not visiting vertices that have already been reached, meaning it can record the path that has been travelled. For this reason, SAW has shown better results when compared to non-restricted walkers network exploration methods. However, as SAW is not a Markovian process, it has a great analytical complexity and needs computational simulations to improve its dynamics in different topologies. Even with the analytical complexity, SAW has become a promising tool to identify the community structure. Despite its significance, detecting communities remains an unsolved problem due to its high computational complexity associated to optimization issues and the lack of a formal definition of communities. In this work, we propose a method to identify communities based on SAW to extract community structure of a network through optimization of the modularity score. Combining technical features of this dynamic with principal components analyses, we classify the vertices in groups by using hierarchical agglomerative clustering. To evaluate the performance of this new algorithm, we compare the results with four other popular techniques: Girvan-Newman, Fastgreedy, Walktrap and Infomap, applying the algorithm in two types of synthetic networks and nine different and well known real ones. For the benchmarks, this new technique shows satisfactory results for different combination of parameters as network size, degree distribution and number of communities. As for real networks, our data shows better modularity values when compared to traditional methods, indicating a group distribution most suitable to reality. Furthermore, the algorithm was adapted for general weighted networks and digraphs in addition to metadata incorporated to topological structure, in order to improve the results of groups classifications.
2

Análise estrutural de redes complexas modulares por meio de caminhadas auto-excludentes / Structural analysis of modular complex networks through self avoiding walk

Guilherme de Guzzi Bagnato 27 April 2018 (has links)
O avanço das pesquisas em redes complexas proporcionou desenvolvimentos significativos para a compreensão de sistemas complexos. Uma rede complexa é modelada matematicamente por meio de um grafo, onde cada vértice representa uma unidade dinâmica e suas interações são simbolizadas por um conjunto de arestas. Para se determinar propriedades estruturais desse sistema, caminhadas aleatórias tem-se mostrado muito úteis pois dependem apenas de informações locais (vértices vizinhos). Entre elas, destaca-se o passeio auto-excludente (SAW) que possui a restrição de não visitar um vértice que já foi alcançado, ou seja, apresenta memória do caminho percorrido. Por este motivo o SAW tem apresentado melhores resultados do que caminhantes sem restrição, na exploração da rede. Entretanto, por não se tratar de um processo Markoviano ele apresenta grande complexidade analítica, tornando indispensável o uso de simulações computacionais para melhor compreensão de sua dinâmica em diferentes topologias. Mesmo com as dificuldades analíticas, o SAW se tornou uma ferramenta promissora na identificação de estruturas de comunidades. Apesar de sua importância, detecção de comunidades permanece um problema em aberto devido à alta complexidade computacional associada ao problema de optimização, além da falta de uma definição formal do significado de comunidade. Neste trabalho, propomos um método de detecção de comunidades baseado em SAW para extrair uma estrutura de comunidades da rede otimizando o parâmetro modularidade. Combinamos características extraídas desta dinâmica com a análise de componentes principais para posteriormente classificar os vértices em grupos por meio da clusterização hierárquica aglomerativa. Para avaliar a performance deste novo algoritmo, comparamos os resultados com outras quatro técnicas populares: Girvan-Newman, Fastgreedy, Walktrap e Infomap, aplicados em dois tipos de redes sintéticas e nove redes reais diversificadas e bem conhecidas. Para os benchmarks, esta nova técnica produziu resultados satisfatórios em diferentes combinações de parâmetros, como tamanho de rede, distribuição de grau e número de comunidades. Já para as redes reais, obtivemos valores de modularidade superior aos métodos tradicionais, indicando uma distribuição de grupos mais adequada à realidade. Feito isso, generalizamos o algoritmo para redes ponderadas e digrafos, além de incorporar metadados à estrutura topológica a fim de melhorar a classificação em grupos. / The progress in complex networks research has provided significant understanding of complex systems. A complex network is mathematically modeled by a graph, where each vertex represents a dynamic unit and its interactions are symbolized by groups of edges. To determine the system structural properties, random walks have shown to be a useful tool since they depend only on local information (neighboring vertices). Among them, the selfavoiding walk (SAW) stands out for not visiting vertices that have already been reached, meaning it can record the path that has been travelled. For this reason, SAW has shown better results when compared to non-restricted walkers network exploration methods. However, as SAW is not a Markovian process, it has a great analytical complexity and needs computational simulations to improve its dynamics in different topologies. Even with the analytical complexity, SAW has become a promising tool to identify the community structure. Despite its significance, detecting communities remains an unsolved problem due to its high computational complexity associated to optimization issues and the lack of a formal definition of communities. In this work, we propose a method to identify communities based on SAW to extract community structure of a network through optimization of the modularity score. Combining technical features of this dynamic with principal components analyses, we classify the vertices in groups by using hierarchical agglomerative clustering. To evaluate the performance of this new algorithm, we compare the results with four other popular techniques: Girvan-Newman, Fastgreedy, Walktrap and Infomap, applying the algorithm in two types of synthetic networks and nine different and well known real ones. For the benchmarks, this new technique shows satisfactory results for different combination of parameters as network size, degree distribution and number of communities. As for real networks, our data shows better modularity values when compared to traditional methods, indicating a group distribution most suitable to reality. Furthermore, the algorithm was adapted for general weighted networks and digraphs in addition to metadata incorporated to topological structure, in order to improve the results of groups classifications.
3

Identificação de outliers em redes complexas baseado em caminhada aleatória / Outlier detection in complex networks based on random walk

Araújo, Bilzã Marques de 20 September 2010 (has links)
Na natureza e na ciência, dados e informações que desviam significativamente da média frequentemente possuem grande relevância. Esses dados são usualmente denominados na literatura como outliers. A identificação de outliers é importante em muitas aplicações reais, tais como detecção de fraudes, diagnóstico de falhas, e monitoramento de condições médicas. Nos últimos anos tem-se testemunhado um grande interesse na área de Redes Complexas. Redes complexas são grafos de grande escala que possuem padrões de conexão não trivial, mostrando-se uma poderosa maneira de representação e abstração de dados. Embora um grande montante de resultados tenham sido reportados nesta área de pesquisa, pouco tem sido explorado acerca de detecção de outliers em redes complexas. Considerando-se a dinâmica de uma caminhada aleatória, foram propostos neste trabalho uma medida de distância e um método de ranqueamento de outliers. Através desta técnica, é possível detectar como outlier não somente nós periféricos, mas também nós centrais (hubs), depedendo da estrutura da rede. Também foi identificado que existem características bem definidas entre os nós outliers, relacionadas a funcionalidade dos mesmos para a rede. Além disso, foi descoberto que nós outliers têm papel importante para a rotulação a priori na tarefa de detecção de comunidades semi-supervisionada. Isto porque os nós centrais são bons difusores de informação e os nós periféricos encontram-se em regiões de borda de comunidade. Baseado nessa observação, foi proposto um método de detecção de comunidades semi-supervisionado. Os resultados de simulações mostram que essa abordagem é promissora / In nature and science, information and data that deviate significantly from the average value often have great relevance. These data are often called in literature as outliers. Outlier identification is important in many real applications, such as fraud detection, fault diagnosis, monitoring of medical conditions. In recent years, it has been witnessed a great interest in the area of Complex Networks. Complex networks are large-scale graphs with non-trivial connection patterns, proving to be a powerful way of data representation and abstraction. Although a large amount of results have been reported in this research area, little has been explored about the outlier detection in complex networks. Considering the dynamics of a random walk, we proposed in this paper a distance measure and a outlier ranking method. By using this technique, we can detect not only peripheral nodes, but also central nodes (hubs) as outliers, depending on the network structure. We also identified that there are well defined relationship between the outlier nodes and the functionality of the same nodes for the network. Furthermore, we found that outliers play an important role to label a priori nodes in the task of semi-supervised community detection. This is because the hubs are good information disseminators and peripheral nodes are usually localized in the regions of community edges. Based on this observation, we proposed a method of semi-supervised community detection. The simulation results show that this approach is promising
4

CENTRALIDADE DA CAMINHADA ALEATÓRIA EM REDES COMPLEXAS

Benicio, Marily Aparecida 09 April 2013 (has links)
Made available in DSpace on 2017-07-21T19:26:05Z (GMT). No. of bitstreams: 1 Marily Aparecida Benicio.pdf: 2662358 bytes, checksum: ba11ae50b21bd9be5feba0d2bf5fd563 (MD5) Previous issue date: 2013-04-09 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Studies of complex networks help us to understand and model many real world situations. The world abounds in networks that can be found in many real contexts. The term network refers to relations between two sets and can be represented by means of graph theory. The classification of complex networks is given according to the models created to represent them, such as Random networks, networks of Small World, No Scaling networks and hierarchical networks. From the perspective of complex networks, a study which make significant contributions analysis is the phenomenon of diffusion of information in networks, which can be understood through the random walk process, which is characterized by a stochastic used as a mechanism transportation and research in complex networks. A random walk in complex networks can be used to check the behavior of each network model front dissipation. Each network model presents a different behavior with respect to the number of random walkers that pass through the network node over time. The number of walkers will depend on the structure of the networks generated by each model and measures of centrality of each node. Measures of centrality of the vertices of the network are useful for comparing the efficienc of the nodes with respect to receiving and sending information being indicative of the rapidity with which this transport happens. The objective of this work is to study the process of random walk and use it to analyze the efficiency of Centrality measures, inferring the number of random walkers who pass by us in complex networks. Measures of centrality are analyzed centralities Degree, Centrality Intermediation by Minor Roads, Centralization of Random Walk. To compare the efficiency of these measures of centrality in the different network models, numerical simulations were performed. With these, it was noticed that the behavior of the diffusion of walkers varies for each network model. Random network for the flow of walkers from the evenly is not possible to highlight some vertex of utmost importance within the network. It can be observed that the measure of centrality of Random Walk is the one that showed greater efficiency by pointing a greater flow of walkers to the vertices that had a higher value for this measure. / Os estudos sobre redes complexas nos auxiliam a compreender e modelar muitas situações do mundo real. O mundo é abundante em redes que podem ser encontradas em diversos contextos reais. O termo redes faz referência às relações estabelecidas entre dois conjuntos e podem ser representadas por meio da teoria de grafos. A classificação das redes complexas se dá de acordo com os modelos criados para representá-las, tais como as redes Aleatórias, redes de Pequeno Mundo, redes Sem Escala e redes Hierárquicas. Dentro da perspectiva de redes complexas, um estudo que pode trazer contribuições importantes é análise do fenômeno de difusão de informação em redes, os quais podem ser entendidos através do processo da caminhada aleatória, a qual se caracteriza por ser um processo estocástico utilizado como um mecanismo de transporte e pesquisa em redes complexas. A caminhada aleatória nas redes complexas pode ser utilizada para verificar o comportamento de cada modelo de rede frente à dissipação. Cada modelo de rede apresenta um comportamento diferente com relação ao número de caminhantes aleatórios que passam por nó da rede ao longo do tempo. Este número de caminhantes irá depender da estrutura das redes geradas por cada modelo e das medidas de Centralidade de cada nó. As medidas de centralidade dos vértices da rede são úteis para comparar a eficiência dos nós com relação ao recebimento e envio de informações sendo indicativos da rapidez com a qual, este transporte acontece. O objetivo deste trabalho é estudar o processo da caminhada aleatória e utilizá-la para analisar a eficiência das medidas de Centralidade, inferindo o número de caminhantes aleatórios que passam pelos nós nas redes complexas. As medidas de centralidade analisadas são as centralidades do Grau, Centralidade de Intermediação por Menores Caminhos, Centralidade da Caminhada Aleatória. Para comparar a eficiência das referidas medidas de Centralidade nos diferentes modelos de redes, foram realizadas simulações numéricas. Com estas, percebeu-se que o comportamento da difusão de caminhantes varia para cada modelo de rede. Para a rede Aleatória o fluxo de caminhantes se da de maneira uniforme não sendo possível destacar algum vértice de maior importância dentro da rede. Pode-se observar que a medida de Centralidade da Caminhada Aleatória é a que mostrou maior eficiência ao apontar o um maior fluxo de caminhantes aos vértices que possuíam um maior valor para essa medida.
5

Identificação de outliers em redes complexas baseado em caminhada aleatória / Outlier detection in complex networks based on random walk

Bilzã Marques de Araújo 20 September 2010 (has links)
Na natureza e na ciência, dados e informações que desviam significativamente da média frequentemente possuem grande relevância. Esses dados são usualmente denominados na literatura como outliers. A identificação de outliers é importante em muitas aplicações reais, tais como detecção de fraudes, diagnóstico de falhas, e monitoramento de condições médicas. Nos últimos anos tem-se testemunhado um grande interesse na área de Redes Complexas. Redes complexas são grafos de grande escala que possuem padrões de conexão não trivial, mostrando-se uma poderosa maneira de representação e abstração de dados. Embora um grande montante de resultados tenham sido reportados nesta área de pesquisa, pouco tem sido explorado acerca de detecção de outliers em redes complexas. Considerando-se a dinâmica de uma caminhada aleatória, foram propostos neste trabalho uma medida de distância e um método de ranqueamento de outliers. Através desta técnica, é possível detectar como outlier não somente nós periféricos, mas também nós centrais (hubs), depedendo da estrutura da rede. Também foi identificado que existem características bem definidas entre os nós outliers, relacionadas a funcionalidade dos mesmos para a rede. Além disso, foi descoberto que nós outliers têm papel importante para a rotulação a priori na tarefa de detecção de comunidades semi-supervisionada. Isto porque os nós centrais são bons difusores de informação e os nós periféricos encontram-se em regiões de borda de comunidade. Baseado nessa observação, foi proposto um método de detecção de comunidades semi-supervisionado. Os resultados de simulações mostram que essa abordagem é promissora / In nature and science, information and data that deviate significantly from the average value often have great relevance. These data are often called in literature as outliers. Outlier identification is important in many real applications, such as fraud detection, fault diagnosis, monitoring of medical conditions. In recent years, it has been witnessed a great interest in the area of Complex Networks. Complex networks are large-scale graphs with non-trivial connection patterns, proving to be a powerful way of data representation and abstraction. Although a large amount of results have been reported in this research area, little has been explored about the outlier detection in complex networks. Considering the dynamics of a random walk, we proposed in this paper a distance measure and a outlier ranking method. By using this technique, we can detect not only peripheral nodes, but also central nodes (hubs) as outliers, depending on the network structure. We also identified that there are well defined relationship between the outlier nodes and the functionality of the same nodes for the network. Furthermore, we found that outliers play an important role to label a priori nodes in the task of semi-supervised community detection. This is because the hubs are good information disseminators and peripheral nodes are usually localized in the regions of community edges. Based on this observation, we proposed a method of semi-supervised community detection. The simulation results show that this approach is promising
6

Teoria de Valores Extremos Aplicada a Redes Complexas

Borges, Rafael Ribaski 05 March 2013 (has links)
Made available in DSpace on 2017-07-21T19:26:05Z (GMT). No. of bitstreams: 1 Rafael Ribaski Borges.pdf: 2504879 bytes, checksum: b87dbb16266c955866bfc47eef34de30 (MD5) Previous issue date: 2013-03-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The extreme value theory is a branch of statistics and probability. It deals with the asymptotic distributions of extreme values (maximum or minimum) temporal series. The events which takes the average values removed are classified as extreme events. Examples include natural disasters such as goods, earthquakes or an event that causes a strong impact on society. Considering the scenario of complex networks, some examples of extreme events are congestion in networks of roads, power outages in power transmission networks and web servers congested. Thus, understanding the mechanisms that occur in such events is of great interest, because the prediction of these occurrences can minimize its efects, or even avoid them. Thus, the objectives of this study were: 1) to describe the asymptotic behavior of exceedances of a threshold specified by the generalized extreme value distribution, 2) extend the study to the probability of extreme events in complex networks with random topology, small world and scale free. This work was carried out by simulations of random walk pattern and shorter paths. The results shows that for the nodes, also called vertices or sites with low connectivity (lesser degree) in the networks analyzed, the distribution of excesses is not of exponential type. This implies that this distribution is bounded above. The results for the nodes with higher degree were similar, but only for the scale-free network this behavior does not occur. This is due to the fact that the number of exceedances observed in this case is signicantly smaller than the other. It was checked analytically and numerically simulated by random walk pattern, the probability of extreme event is larger and the average time between them is smaller for nodes with lower degree when compared with nodes with higher degree. The spectrum of eigenvalues of the adjacency matrix of the network, which describes the links between nodes, provides conditions for a good agreement between the analytical results and the simulations. For simulations of random walk for shorter paths it was found that nodes with lower betweenness centralities are more likely to have extreme events. / A teoria de valores extremos é um ramo da estatística e probabilidade. Ela trata das distribuições assintóticas de valores extremos (máximos ou mínimos) de séries temporais. Os eventos que assumem valores afastados da média são classificados como eventos extremos. Alguns exemplos são desastres naturais, tais como enchentes, terremotos ou um evento que cause um forte impacto na sociedade. Considerando o cenário de redes complexas, alguns exemplos de eventos extremos são congestionamentos em redes de rodovias, quedas de energia em redes de transmissão e servidores de internet congestionados. Assim, a compreensão dos mecanismos que regem tais eventos é de grande interesse, pois com a previsão de ocorrências destes pode-se minimizar seus efeitos ou até mesmo evitá-los. Com isso, os objetivos deste trabalho foram: 1) descrever o comportamento assintótico das excedências de um valor limite especicado por meio da distribuição de valores extremos generalizada; 2) estender o estudo para a probabilidade de eventos extremos em redes complexas com topologia aleatória, mundo pequeno e escala livre. Este trabalho foi realizado por meio de simulações de caminhada aleatória padrão e por menores caminhos. Os resultados obtidos mostram que para os nós, também denominados vértices ou sítios, com menor conectividade (menor grau) nas redes analisadas, a distribuição dos excessos não é do tipo exponencial. Isto implica que esta distribuição é limitada superiormente. Os resultados para os nós com maior grau foram semelhantes, porém, somente para a rede de escala livre este comportamento não ocorre. Isto se deve ao fato de que o número de excedências observadas neste caso são menores do que nos demais. Foi vericado analiticamente e numericamente por meio de simulações de caminhada aleatória padrão, que a probabilidade de evento extremo é maior e que o tempo médio entre eles é menor para os nós com grau menor, quando comparados com nós com grau maior. O espectro de autovalores da matriz adjacência da rede, a qual descreve as ligações entre os nós, fornece condições para uma boa concordância entre os resultados analíticos e das simulações.Para simulações de caminhada aleatória por menores caminhos verificou-se que os nós com menores centralidades de intermediação são mais propensos a ter eventos extremos.
7

EMERGÊNCIA E FLUXO DE INFORMAÇÃO EM REDES COMPLEXAS

Miranda, Pedro Jeferson 03 September 2014 (has links)
Made available in DSpace on 2017-07-21T19:26:10Z (GMT). No. of bitstreams: 1 Pedro Jeferson Miranda.pdf: 3220140 bytes, checksum: a557a7dc630657c2bc53d73eb4fd7f48 (MD5) Previous issue date: 2014-09-03 / Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná / The emergence is a phenomenon that gives sense to the qualitative unity of any substance, consisting the reflex in the ontological act of perception. It is the conceptual key that justifies the use of complex network models to describe systems, which also are complex in nature. Given this key concept, it was desired to apply it on real objects in order to create new analysis methodologies. For this, graph’s theory and random walk’s theory were used as fundamentals for two study cases. One of them consists on an analysis of the mythological social network of Odyssey of Homer. It was found that this network displays structural characteristic of real social network mixed with fictional aspects associated to mythological characters. Another study was the oral tolerance phenomenon modeled as a complex network associated with stochastic dynamics. We applied the random walk as a way to understand the relative importance of each immunological component. Finally, it becomes evidenced that the key concept of emergence allows new forms of analysis using complex network theory as a model which comprises the complexity inherent on the conception of real systems. / A emergência é fenômeno que dá unidade qualitativa a qualquer substância, constituindo o reflexo no ato ontológico da percepção. É a chave conceitual que justifica o uso do modelo em redes complexas para descrever sistemas, que também são complexos naturalmente. Dada essa chave conceitual, buscou-se utilizá-la na geração de novas análises. Para tanto é empregado a teoria de grafos e a caminhada aleatória em dois estudo de caso. Um deles constitui a análise de uma rede mitológica referente à Odisseia de Homero. Foi verificado que a rede mitológica apresenta padrões de redes sociais reais quando excetuados da rede as personagens mitológicas. Em segundo lugar, foi realizado um estudo da tolerância oral como um fenômeno de rede complexa, foi utilizada a caminhada aleatória como modelo estocástico de difusão de estímulos numa rede complexa. Com isso, foi possível conhecer a importância relativa de cada componente imunológica. Por fim, fica evidenciado que o conceito chave de emergência permite a concepção de novas formas de análise, fundamentalmente no uso de redes complexas como modelos que albergam a complexidade inerente na concepção de sistemas reais.
8

Aspectos estatísticos em dinâmica de busca em ambientes escassos. / Statistical aspects in dynamics search in scarce environments.

Faustino, Caio Leite 12 February 2009 (has links)
In this work, we analyze search dynamics and the statistical properties of an organism in search of a target of interest. In general terms, there are many interesting aspects of studies of this nature. For example, in the biological context, organisms in Nature constantly interact one with another, both of the same as well as of different species. The general objectives of random searches are diverse, ranging from searches for food, reproductive partners, etc. of living organisms to socio-economically relevant processes, such as searches for missing children, fugitive terrorists, or searches for petroleum. In our specific model, we consider the searcher and the target moving randomly in a one dimensional lattice of size with periodic boundary conditions. The type of diffusion in the system is determined by the choice of the probability distribution function for the steps sizes for the individual walkers. We assume a power law distribution, characteristic of Levy processes, . Considering an initial energy for the searcher, an energetic expenditure for the walk and an energetic gain g for each target found, we discuss relevant physical quantities, such as energy fluctuations, the fraction of survival searchers and the cumulative energy for N time steps, as a function of the parameters, e.g., the lattice size . We find that searches with ballistic diffusion are more efficient than Brownian ones, allowing the survival of the searcher in situations of ultra-low target density. This extreme behavior guarantees the differential survival of such searchers. We also find strong evidence of a continuous phase transition, in which one phase has survival and the other phase has extinction. We calculate the critical densities which depend on the parameters of diffusion adopted by the organisms. We also obtain the critical exponents for the transition. Our results suggest a universality of the critical exponents, which independent of the type of diffusion of the organisms. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho, analisamos a dinâmica de busca e propriedades estatísticas de um organismo buscador ( searcher ) à procura de um alvo de interesse ( target ). De forma geral, muitos são os aspectos de interesse nesse tipo de estudo. Por exemplo, se pensarmos no contexto biológico, temos que na natureza constantemente organismos interagem uns com os outros, tanto dentro da mesma como entre diferentes espécies. Os objetivos gerais da busca aleatória são os mais variados, indo desde busca de alimentos, parceiro para reprodução etc, em seres vivos, até processos de interesse socio-econômicos, como busca por crianças desaparecidas, terroristas fugitivos ou então busca por petróleo. Em nosso modelo específico, consideramos o buscador e o alvo caminhando aleatoriamente numa rede unidimensional de tamanho e com condições periódicas de contorno. O tipo de difusão no sistema é determinado pela escolha da função de distribuição de probabilidade para os passos individuais dos indivíduos. Assumimos uma distribuição tipo lei de potência, característica de processos de Lévy . Considerando uma energia inicial do buscador , um gasto energético de caminhada e um ganho de energia g cada vez que o buscador encontra o alvo, discutimos algumas quantidades físicas relevantes, como flutuação energética, fração de buscadores sobreviventes e energia acumulada para N passos realizados - tempo de busca - como função de diferentes parâmetros, por exemplo, o comprimento de rede . Constatamos que o processo de busca com difusão balística é mais eficiente do que a Browniana, ocasionando a sobrevivência do organismo buscador em situações de densidade de alvos muito baixas. Este comportamento extremo garante a relativa sobrevivência do buscador. Também verificamos fortes evidências de uma transição contínua, para a qual numa dada fase temos sobrevivênvia e em outra temos extinção. Calculamos as densidades críticas que dependem dos parâmetros de difusão adotados pelos organismos. Também obtemos os expoentes críticos relacionados a tal transição. Nossos resultados sugerem uma universalidade dos expoentes críticos, que independente do tipo de difusão seguida pelos organismos.
9

Expoente de Hurst e diagrama de fase para persistência induzida amnesticamente em processos não-markovianos. / Hurst exponent and the phase diagram for persistence induced amnestic on a non-Markovian

Ferreira, Arlan da Silva 07 August 2009 (has links)
Nowadays there has been a growing interest in anomalous diffusion: the super difusive and sub-difusive processes. The problem about normal diffusion already well established whereas many problems still exist in anomalous diffusion. Several mathematical models and computational techniques have been developed to model such processes. In this work we studied a non-Markovian Random Walk (RW), in one dimension in which the development of the process is governed by decisions taken in the distant past. We used as tool of analysis, analytical and numerical procedures (Monte Carlo method). In this problem, the walker takes its decisions (go right or left) at a given time t, based on the decisions taken in the past, namely in a fraction f of the total time. As far as the decision making process is considered only the distant past is taken into account. This loss of recent memory leads the probability density function of the position to change from Gaussian to non-Gaussian and leads to the emergence of log-periodic oscillations in position, besides producing a change in the behavior of non-persistent to persistent, causing anomalous diffusion. This change is characterized by the Hurst exponent, and is found, surprisingly, in a region where there is negative feedback. The diagram of phases depending on the parameters f and p (fraction of old memory and feedback), shows the following phases: classical non persistence, classical persistence, log-periodic non persistence, log-periodic persistence, Gaussian and non Gaussian with respect to the position of the walker. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Atualmente tem crescido o interesse por processos de difusão anômala, i.e., os super difusivos e sub-difusivos. O problema voltado para difusão normal já é bem conhecido, enquanto para difusões anômalas ainda existem vários problemas em abertos. Várias técnicas computacionais e modelos matemáticos têm sido desenvolvidos para modelar tais processos. Estudamos neste trabalho uma caminhada aleatória, não Markoviana em uma dimensão, em que o desenvolvimento do processo é regido por decisões tomadas em relação ao passado distante. Utilizamos como ferramenta de análise uma abordagem analítica e numérica (via método de Monte Carlo). Nesse problema, o caminhante toma suas decisões (entre ir para a direita ou para a esquerda), num determinado tempo t, com base nas decisões tomadas no passado, numa fração f do tempo transcorrido. Quando f<1 o passado recente é esquecido e apenas o passado distante é considerado. Essa perda de memória recente induz a função densidade de probabilidade da posição a passar de um regime Gaussiano para não Gaussiano e leva ao surgimento de oscilações log-periódicas na posição, além de produzir uma mudança no comportamento, de não persistente para persistente, ocasionando difusão anômala. Essa mudança é caracterizada pelo expoente de Hurst e ocorre também, surpreendentemente, numa região de feedback negativo. O diagrama de fases em função dos parâmetros f e p (fração de memória antiga e feedback), mostra as seguintes regiões: não persistência clássica; persistência clássica; não persistência log-periódica e persistência log-periódica; região Gaussiana e não Gaussiana da posição.
10

Machine learning via dynamical processes on complex networks / Aprendizado de máquina via processos dinâmicos em redes complexas

Cupertino, Thiago Henrique 20 December 2013 (has links)
Extracting useful knowledge from data sets is a key concept in modern information systems. Consequently, the need of efficient techniques to extract the desired knowledge has been growing over time. Machine learning is a research field dedicated to the development of techniques capable of enabling a machine to \"learn\" from data. Many techniques have been proposed so far, but there are still issues to be unveiled specially in interdisciplinary research. In this thesis, we explore the advantages of network data representation to develop machine learning techniques based on dynamical processes on networks. The network representation unifies the structure, dynamics and functions of the system it represents, and thus is capable of capturing the spatial, topological and functional relations of the data sets under analysis. We develop network-based techniques for the three machine learning paradigms: supervised, semi-supervised and unsupervised. The random walk dynamical process is used to characterize the access of unlabeled data to data classes, configuring a new heuristic we call ease of access in the supervised paradigm. We also propose a classification technique which combines the high-level view of the data, via network topological characterization, and the low-level relations, via similarity measures, in a general framework. Still in the supervised setting, the modularity and Katz centrality network measures are applied to classify multiple observation sets, and an evolving network construction method is applied to the dimensionality reduction problem. The semi-supervised paradigm is covered by extending the ease of access heuristic to the cases in which just a few labeled data samples and many unlabeled samples are available. A semi-supervised technique based on interacting forces is also proposed, for which we provide parameter heuristics and stability analysis via a Lyapunov function. Finally, an unsupervised network-based technique uses the concepts of pinning control and consensus time from dynamical processes to derive a similarity measure used to cluster data. The data is represented by a connected and sparse network in which nodes are dynamical elements. Simulations on benchmark data sets and comparisons to well-known machine learning techniques are provided for all proposed techniques. Advantages of network data representation and dynamical processes for machine learning are highlighted in all cases / A extração de conhecimento útil a partir de conjuntos de dados é um conceito chave em sistemas de informação modernos. Por conseguinte, a necessidade de técnicas eficientes para extrair o conhecimento desejado vem crescendo ao longo do tempo. Aprendizado de máquina é uma área de pesquisa dedicada ao desenvolvimento de técnicas capazes de permitir que uma máquina \"aprenda\" a partir de conjuntos de dados. Muitas técnicas já foram propostas, mas ainda há questões a serem reveladas especialmente em pesquisas interdisciplinares. Nesta tese, exploramos as vantagens da representação de dados em rede para desenvolver técnicas de aprendizado de máquina baseadas em processos dinâmicos em redes. A representação em rede unifica a estrutura, a dinâmica e as funções do sistema representado e, portanto, é capaz de capturar as relações espaciais, topológicas e funcionais dos conjuntos de dados sob análise. Desenvolvemos técnicas baseadas em rede para os três paradigmas de aprendizado de máquina: supervisionado, semissupervisionado e não supervisionado. O processo dinâmico de passeio aleatório é utilizado para caracterizar o acesso de dados não rotulados às classes de dados configurando uma nova heurística no paradigma supervisionado, a qual chamamos de facilidade de acesso. Também propomos uma técnica de classificação de dados que combina a visão de alto nível dos dados, por meio da caracterização topológica de rede, com relações de baixo nível, por meio de medidas de similaridade, em uma estrutura geral. Ainda no aprendizado supervisionado, as medidas de rede modularidade e centralidade Katz são aplicadas para classificar conjuntos de múltiplas observações, e um método de construção evolutiva de rede é aplicado ao problema de redução de dimensionalidade. O paradigma semissupervisionado é abordado por meio da extensão da heurística de facilidade de acesso para os casos em que apenas algumas amostras de dados rotuladas e muitas amostras não rotuladas estão disponíveis. É também proposta uma técnica semissupervisionada baseada em forças de interação, para a qual fornecemos heurísticas para selecionar parâmetros e uma análise de estabilidade mediante uma função de Lyapunov. Finalmente, uma técnica não supervisionada baseada em rede utiliza os conceitos de controle pontual e tempo de consenso de processos dinâmicos para derivar uma medida de similaridade usada para agrupar dados. Os dados são representados por uma rede conectada e esparsa na qual os vértices são elementos dinâmicos. Simulações com dados de referência e comparações com técnicas de aprendizado de máquina conhecidas são fornecidos para todas as técnicas propostas. As vantagens da representação de dados em rede e de processos dinâmicos para o aprendizado de máquina são evidenciadas em todos os casos

Page generated in 0.1763 seconds