Spelling suggestions: "subject:"caminhada como memória""
1 |
Caminhadas deterministas parcialmente auto-repulsivas: resultados analíticos para o efeito da memória do turista na exploração de meios desordenados / Deterministic partially self-avoiding walks: analytical results for the effect of tourist\'s memory in the exploration of disordered mediaTerçariol, César Augusto Sangaletti 08 December 2008 (has links)
Considere um meio desordenado constituído por $N$ pontos cujas coordenadas são geradas aleatoriamente de maneira uniforme e independente nas arestas unitárias de um hipercubo $d$-dimensional. As probabilidades de vizinhança entre os pares de pontos deste meio são expressas através da fórmula de Cox. Um caminhante parte de um dado ponto deste meio desordenado e se movimenta obedecendo à regra determinista de ir para o ponto mais próximo que não tenha sido visitado nos últimos $\\mu$ passos. Este processo foi denominado de caminhada determinista do turista. Cada trajetória gerada por esta dinâmica possui uma parte inicial não-periódica de $t$ passos (transiente) e uma parte final periódica de $p$ passos (atrator). Neste trabalho, obtemos analiticamente algumas distribuições estatísticas para a caminhada determinista do turista com memória $\\mu$ arbitrária em sistemas unidimensionais e com memória $\\mu=2$ no modelo Random Link (que corresponde ao limite $d ightarrow 1$). Estes resultados nos permitiram compreender o papel da memória no comportamento exploratório do turista e explicar a equivalência não-trivial entre o modelo Random Link e o modelo Random Map (que é um caso limite das redes de Kauffman). Enfatizamos que o número de pontos explorados pelo turista é a grandeza fundamental nos problemas considerados. As distribuições analíticas obtidas foram validadas através de experimentos numéricos. Também obtivemos uma dedução alternativa para a fórmula de Cox, apresentando os resultados finais em termos de distribuições estatísticas elementares. / Consider a medium characterized by $N$ points whose coordinates are randomly and independently generated by a uniform distribution along the unitary edges of a $d$-dimensional hypercube. The neighborhood probabilities between any pair of points in this medium are given by the Cox formula. A walker leaves from each point of this disordered medium and moves according to the deterministic rule to go the nearest point which has not been visited in the preceding $\\mu$ steps. This process has been called the deterministic tourist walk. Each trajectory generated by this dynamics has an initial non-periodic part of $t$ steps (transient) and a final periodic part of $p$ steps (attractor). In this work, we obtain analytically some statistical distributions for the deterministic tourist walk with arbitrary memory $\\mu$ in one-dimensional systems and with memory $\\mu=2$ in the random link model (which corresponds to $d ightarrow 1$ limit). These results enable us to understand the main role played by the memory on the tourist\'s exploratory behavior and explain the non-trivial equivalence between the random link model and the random map model (which is a limiting case of the Kauffman model). We stress that the number of explored points is the fundamental quantity in the considered problems. The obtained distributions have been validated by numerical experiments. We also obtain an alternative derivation for the Cox formula, writing the final results in terms of known statistical distributions.
|
2 |
Novos resultados nas caminhadas deterministas parcialmente autorepulsivas em meios aleatórios obtidos com o gerenciamento numérico da memória dos caminhantes / New Results in Random Media of the deterministic partially self-avoiding walk, obtained with memory numerical management of the walkers.Oliveira, Wilnice Tavares Reis 29 April 2010 (has links)
Podemos considerar a caminhada determinista do turista como um processo do tipo dinâmico, que ocorre sobre uma rede composta por N pontos. Os pontos são gerados de maneira aleatória, no espaço euclidiano d dimensional. Um caminhante, partindo de um ponto qualquer do meio desordenado, se movimenta seguindo uma regra determinista de ir para o ponto mais próximo que não tenha sido visitado nos últimos ?= µ - 1 passos. Cada uma das trajetórias geradas através dessa dinâmica possui uma parte inicial não periódica de t passos, denominada transiente, e uma parte final, periódica, de p passos, denominada atrator. Devido ao custo computacional de memória, só é possível simular sistemas com N ? O(103) e µ << N. Neste estudo uma nova implementação na estrutura de armazenamento de dados, no modelo numérico do turista, nos permitiu obter algumas distribuições estatísticas para a caminhada, com valores de memória µ ? O(N). Com estes resultados verificamos a eficiência da estrutura proposta e avançamos no conhecimento acerca do comportamento do turista em caminhadas com memória da ordem de N. Também neste trabalho, obtivemos resultados numéricos interessantes, que serviram para explicar a formação de atratores com determinados períodos na caminhada determinista do turista unidimensional, bem como a não formação de atratores com períodos 2µ+1, 2µ+2 e 2µ+3.não são constituídos. Também neste trabalho, uma nova implementação na estrutura de armazenamento de dados, no modelo numérico do turista, nos permitiu obter algumas distribuições estatísticas para a caminhada, com valores de memória ? muito acima do que se tinha alcançado anteriormente. Com estes resultados verificamos a eficiência da estrutura proposta, e avançamos o conhecimento a cerca do comportamento do turista em sistema da ordem de N. / We may consider the deterministic tourist walk as a dynamic process performed over a landscape of N points. These points are randomly spread on a d dimensional euclidean space. A walker leaves from any point of that landscape and moves according to the deterministic rule of going to the nearest point that has not been visited in the last ?= µ - 1 steps. Each trajectory generated by this dynamics has an initial non-periodic part of t steps, called transient, and a final periodic one of p steps, called attractor. Due to computational costs of memory usage, it is possible to simulate only small sistems, with N ? O(103) and µ << N. In this work, we propose a new implementation of the structure for data storage. The numerical model of the tourist walk, allowed us to obtain some statistical distributions for the walk with a memory value µ ? O(N). Moreover, in this study we obtain interesting and useful numerical results to explain the presence of some specific attractors in deterministic walk in one-dimensional space and the absence of attractors with periods 2µ+1, 2µ+2 and 2µ+3. are not made. In this work, we propose a new implementation of the structure for storing data, the numerical model of the tourist, has allowed us to obtain some statistical distributions for the walk with a memory value ? over and above what had been achieved previously. With these results, we verifed the efficiency of the HL structure proposed, and advance knowledge about the behavior of the tourist walk in the order of N.
|
3 |
Novos resultados nas caminhadas deterministas parcialmente autorepulsivas em meios aleatórios obtidos com o gerenciamento numérico da memória dos caminhantes / New Results in Random Media of the deterministic partially self-avoiding walk, obtained with memory numerical management of the walkers.Wilnice Tavares Reis Oliveira 29 April 2010 (has links)
Podemos considerar a caminhada determinista do turista como um processo do tipo dinâmico, que ocorre sobre uma rede composta por N pontos. Os pontos são gerados de maneira aleatória, no espaço euclidiano d dimensional. Um caminhante, partindo de um ponto qualquer do meio desordenado, se movimenta seguindo uma regra determinista de ir para o ponto mais próximo que não tenha sido visitado nos últimos ?= µ - 1 passos. Cada uma das trajetórias geradas através dessa dinâmica possui uma parte inicial não periódica de t passos, denominada transiente, e uma parte final, periódica, de p passos, denominada atrator. Devido ao custo computacional de memória, só é possível simular sistemas com N ? O(103) e µ << N. Neste estudo uma nova implementação na estrutura de armazenamento de dados, no modelo numérico do turista, nos permitiu obter algumas distribuições estatísticas para a caminhada, com valores de memória µ ? O(N). Com estes resultados verificamos a eficiência da estrutura proposta e avançamos no conhecimento acerca do comportamento do turista em caminhadas com memória da ordem de N. Também neste trabalho, obtivemos resultados numéricos interessantes, que serviram para explicar a formação de atratores com determinados períodos na caminhada determinista do turista unidimensional, bem como a não formação de atratores com períodos 2µ+1, 2µ+2 e 2µ+3.não são constituídos. Também neste trabalho, uma nova implementação na estrutura de armazenamento de dados, no modelo numérico do turista, nos permitiu obter algumas distribuições estatísticas para a caminhada, com valores de memória ? muito acima do que se tinha alcançado anteriormente. Com estes resultados verificamos a eficiência da estrutura proposta, e avançamos o conhecimento a cerca do comportamento do turista em sistema da ordem de N. / We may consider the deterministic tourist walk as a dynamic process performed over a landscape of N points. These points are randomly spread on a d dimensional euclidean space. A walker leaves from any point of that landscape and moves according to the deterministic rule of going to the nearest point that has not been visited in the last ?= µ - 1 steps. Each trajectory generated by this dynamics has an initial non-periodic part of t steps, called transient, and a final periodic one of p steps, called attractor. Due to computational costs of memory usage, it is possible to simulate only small sistems, with N ? O(103) and µ << N. In this work, we propose a new implementation of the structure for data storage. The numerical model of the tourist walk, allowed us to obtain some statistical distributions for the walk with a memory value µ ? O(N). Moreover, in this study we obtain interesting and useful numerical results to explain the presence of some specific attractors in deterministic walk in one-dimensional space and the absence of attractors with periods 2µ+1, 2µ+2 and 2µ+3. are not made. In this work, we propose a new implementation of the structure for storing data, the numerical model of the tourist, has allowed us to obtain some statistical distributions for the walk with a memory value ? over and above what had been achieved previously. With these results, we verifed the efficiency of the HL structure proposed, and advance knowledge about the behavior of the tourist walk in the order of N.
|
4 |
Caminhadas deterministas parcialmente auto-repulsivas: resultados analíticos para o efeito da memória do turista na exploração de meios desordenados / Deterministic partially self-avoiding walks: analytical results for the effect of tourist\'s memory in the exploration of disordered mediaCésar Augusto Sangaletti Terçariol 08 December 2008 (has links)
Considere um meio desordenado constituído por $N$ pontos cujas coordenadas são geradas aleatoriamente de maneira uniforme e independente nas arestas unitárias de um hipercubo $d$-dimensional. As probabilidades de vizinhança entre os pares de pontos deste meio são expressas através da fórmula de Cox. Um caminhante parte de um dado ponto deste meio desordenado e se movimenta obedecendo à regra determinista de ir para o ponto mais próximo que não tenha sido visitado nos últimos $\\mu$ passos. Este processo foi denominado de caminhada determinista do turista. Cada trajetória gerada por esta dinâmica possui uma parte inicial não-periódica de $t$ passos (transiente) e uma parte final periódica de $p$ passos (atrator). Neste trabalho, obtemos analiticamente algumas distribuições estatísticas para a caminhada determinista do turista com memória $\\mu$ arbitrária em sistemas unidimensionais e com memória $\\mu=2$ no modelo Random Link (que corresponde ao limite $d ightarrow 1$). Estes resultados nos permitiram compreender o papel da memória no comportamento exploratório do turista e explicar a equivalência não-trivial entre o modelo Random Link e o modelo Random Map (que é um caso limite das redes de Kauffman). Enfatizamos que o número de pontos explorados pelo turista é a grandeza fundamental nos problemas considerados. As distribuições analíticas obtidas foram validadas através de experimentos numéricos. Também obtivemos uma dedução alternativa para a fórmula de Cox, apresentando os resultados finais em termos de distribuições estatísticas elementares. / Consider a medium characterized by $N$ points whose coordinates are randomly and independently generated by a uniform distribution along the unitary edges of a $d$-dimensional hypercube. The neighborhood probabilities between any pair of points in this medium are given by the Cox formula. A walker leaves from each point of this disordered medium and moves according to the deterministic rule to go the nearest point which has not been visited in the preceding $\\mu$ steps. This process has been called the deterministic tourist walk. Each trajectory generated by this dynamics has an initial non-periodic part of $t$ steps (transient) and a final periodic part of $p$ steps (attractor). In this work, we obtain analytically some statistical distributions for the deterministic tourist walk with arbitrary memory $\\mu$ in one-dimensional systems and with memory $\\mu=2$ in the random link model (which corresponds to $d ightarrow 1$ limit). These results enable us to understand the main role played by the memory on the tourist\'s exploratory behavior and explain the non-trivial equivalence between the random link model and the random map model (which is a limiting case of the Kauffman model). We stress that the number of explored points is the fundamental quantity in the considered problems. The obtained distributions have been validated by numerical experiments. We also obtain an alternative derivation for the Cox formula, writing the final results in terms of known statistical distributions.
|
Page generated in 0.0889 seconds