• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 12
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ensemble Modeling of Cancer Metabolism

Khazaei, Tahmineh 08 December 2011 (has links)
Metabolism in cancer cells is adapted to meet the proliferative needs of these cells, with notable changes such as enhanced lactate secretion and glucose uptake rates. In this work, we use the Ensemble Modeling (EM) framework to gain insight and predict potential drug targets for tumor cells. A metabolic network consisting of 58 reactions is considered which accounts for glycolysis, the pentose phosphate pathway, lipid metabolism, amino acid metabolism, and includes allosteric regulation. Experimentally measured metabolite concentrations are used for developing the ensemble of models along with information on established drug targets. The resulting models predicted transaldolase (TALA) and succinate-CoA ligase (SUCOAS1m) to display a significant reduction in growth rate when repressed relative to currently known drug targets. Furthermore, the synergetic repression of transaldolase and glycine hydroxymethyltransferase (GHMT2r) showed a three fold decrease in growth rate compared to the repression of single enzyme targets.
12

Ensemble Modeling of Cancer Metabolism

Khazaei, Tahmineh 08 December 2011 (has links)
Metabolism in cancer cells is adapted to meet the proliferative needs of these cells, with notable changes such as enhanced lactate secretion and glucose uptake rates. In this work, we use the Ensemble Modeling (EM) framework to gain insight and predict potential drug targets for tumor cells. A metabolic network consisting of 58 reactions is considered which accounts for glycolysis, the pentose phosphate pathway, lipid metabolism, amino acid metabolism, and includes allosteric regulation. Experimentally measured metabolite concentrations are used for developing the ensemble of models along with information on established drug targets. The resulting models predicted transaldolase (TALA) and succinate-CoA ligase (SUCOAS1m) to display a significant reduction in growth rate when repressed relative to currently known drug targets. Furthermore, the synergetic repression of transaldolase and glycine hydroxymethyltransferase (GHMT2r) showed a three fold decrease in growth rate compared to the repression of single enzyme targets.
13

Approaches to Improve the Proliferation and Activity of Natural Killer Cells for Adoptive Cell Therapy

Ojo, Evelyn 01 February 2019 (has links)
No description available.
14

Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53.NAD(H)-dependent and (ii) p53-independent pathways

Allison, Simon J., Knight, J.R.P., Granchi, C., Rani, R., Minutolo, F., Milner, J., Phillips, Roger M. January 2014 (has links)
No / Most cancer cells use aerobic glycolysis to fuel their growth. The enzyme lactate dehydrogenase-A (LDH-A) is key to cancer’s glycolytic phenotype, catalysing the regeneration of nicotinamide adenine dinucleotide (NAD+) from reduced nicotinamide adenine dinucleotide (NADH) necessary to sustain glycolysis. As such, LDH-A is a promising target for anticancer therapy. Here we ask if the tumour suppressor p53, a major regulator of cellular metabolism, influences the response of cancer cells to LDH-A suppression. LDH-A knockdown by RNA interference (RNAi) induced cancer cell death in p53 wild-type, mutant and p53-null human cancer cell lines, indicating that endogenous LDH-A promotes cancer cell survival irrespective of cancer cell p53 status. Unexpectedly, however, we uncovered a novel role for p53 in the regulation of cancer cell NAD+ and its reduced form NADH. Thus, LDH-A silencing by RNAi, or its inhibition using a small-molecule inhibitor, resulted in a p53-dependent increase in the cancer cell ratio of NADH:NAD+. This effect was specific for p53+/+ cancer cells and correlated with (i) reduced activity of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and (ii) an increase in acetylated p53, a known target of SIRT1 deacetylation activity. In addition, activation of the redox-sensitive anticancer drug EO9 was enhanced selectively in p53+/+ cancer cells, attributable to increased activity of NAD(P)H-dependent oxidoreductase NQO1 (NAD(P)H quinone oxidoreductase 1). Suppressing LDH-A increased EO9-induced DNA damage in p53+/+ cancer cells, but importantly had no additive effect in non-cancer cells. Our results identify a unique strategy by which the NADH/NAD+ cellular redox status can be modulated in a cancer-specific, p53-dependent manner and we show that this can impact upon the activity of important NAD(H)-dependent enzymes. To summarise, this work indicates two distinct mechanisms by which suppressing LDH-A could potentially be used to kill cancer cells selectively, (i) through induction of apoptosis, irrespective of cancer cell p53 status and (ii) as a part of a combinatorial approach with redox-sensitive anticancer drugs via a novel p53/NAD(H)-dependent mechanism.
15

Oncogenic Phenotypes Induced by Overexpression of the DEK Proto-oncogene

Matrka, Marie C. 16 June 2017 (has links)
No description available.
16

Synthetic lethal treatment strategies for tumor cell senescence

Dörr, Jan Rafael 24 August 2017 (has links)
In Krebszellen induzieren Onkogene und Chemotherapie zelluläre Seneszenz. Dabei handelt es sich um einen terminalen Wachstumsarrest, bei dem durch Trimethylierung der Aminosäure Lysin an Position 9 (K9) des Histons H3 (H3K9me3) die Aktivierung S-Phase-relevanter Gene epigenetisch blockiert ist. Obwohl Therapie-induzierte Seneszenz (TIS) das Gesamtüberleben von Mäusen mit einer Lymphomerkrankung verbessert, stellt eine Elimination seneszenter Zellen aufgrund weiterhin bestehender und neu erworbener tumorigener Eigenschaften ein wichtiges therapeutisches Ziel dar. Die Arbeit zeigt anhand des transgenen Eμ-myc Mausmodells, in dem TIS in Abhängigkeit von der H3K9-Histonmethyltransferase Suv39h1 durch Chemotherapie induziert wird, dass TIS-Zellen in vitro und in vivo einer metabolischen Reprogrammierung unterliegen, die therapeutisch genutzt werden kann. TIS-kompetente Lymphome erhöhen im Gegensatz zu TIS-kompromittierten, Suv39h1- defizienten Lymphomen den Glukoseumsatz und die Produktion von ATP. Diese Umstellung des Stoffwechsels erfolgt als Antwort auf eine erhöhte Proteotoxizität, die durch Bestandteile des Seneszenz-assoziierten sekretorischen Phänotyps (SASP) hervorgerufen wird. SASP-Faktoren lösen in TIS-Zellen erhöhten Stress im endoplasmischen Retikulum (ER) aus und forcieren die Fehlfaltung von Proteinen, die nach vermehrter Ubiquitinierung durch Autophagie unter Energieverbrauch abgebaut werden. Deshalb sind stark SASP-exprimierende TIS-Lymphome im Vergleich zu genetisch durch die Inhibition des Transkriptionsfaktors NfκB veränderten und dadurch SASP-supprimierten TIS-Lymphomen empfindlich gegenüber der Inhibition des Glukosestoffwechsels oder der Blockade von Autophagie. Beides führt zur Elimination von TIS Zellen durch Caspase-12- und Caspase-3-abhängige, ER-initiierte Apoptose. Folglich erwirkt die pharmokologische Inhibition dieser veränderten Stoffwechselbedürfnisse nach TIS Induktion eine Tumorregression und ein verbessertes Gesamtüberleben in vivo. Zusammenfassend zeigen diese Ergebnisse eine katabole Stoffwechsellage seneszenter Zellen, die therapeutisch durch konzeptionell neue „synthetisch-letale“, metabolische Therapien eliminiert werden können. Damit wird erstmals in der Krebstherapie ein Tumor-selektives Seneszenzprogramm zusammen mit der Blockade von Stoffwechselwegen genutzt. / Cellular senescence is a terminal growth arrest of viable cells characterized by S-phase entry-blocking histone 3 lysine 9 trimethylation (H3K9me3) in response to oncogene activation and anticancer chemotherapy. Although therapy-induced senescence (TIS) improves long-term outcome, senescent tumor cells acquire potentially harmful characteristics. Therefore, their quantitative elimination presents a therapeutic opportunity. In this thesis the Eμ-myc transgenic mouse lymphoma model, in which TIS depends on the H3K9 histone methyltransferase Suv39h1, is used to show mechanism and therapeutic exploitation of senescence-related metabolic reprogramming in vitro and in vivo. After senescence-inducing chemotherapy, TIS- competent lymphomas but not TIS-incompetent Suv39h1- lymphomas displayed increased glucose turnover and higher ATP production. The thesis demonstrates that this was due to massive proteotoxic stress, which is a consequence of the enhanced production of secretory proteins - referred to as the senescence-associated secretory phenotype (SASP) - of senescent cells. Consequently, SASP-producing TIS cells exhibited endoplasmic reticulum stress, an unfolded protein response (UPR), and increased ubiquitination, thereby targeting toxic proteins for autophagy in an acutely energy-consuming fashion. Accordingly, TIS lymphomas, unlike senescence models that lack a strong SASP response, for example due to the inhibition of the transcription factor NfκB, were more sensitive to blocking glycolysis or autophagy, which lead to their selective elimination through caspase-12- and caspase-3-mediated endoplasmic reticulum-related apoptosis. Consequently, pharmacological targeting of these metabolic liabilities upon TIS induction in vivo prompted tumor regression and improved treatment outcome further. These findings unveil the hypercatabolic nature of TIS that is therapeutically exploitable by synthetic lethal metabolic targeting. Thus, this treatment approach for the first time combines the inhibition of a tumor-specific senescence program with the interference of a metabolic pathway.
17

Development of models and methods to assess the efficacy of anti-cancer drugs targeted to the mitochondria

Potter, Michelle January 2014 (has links)
<strong>Background:</strong> Malignant transformation of cells is typically characterised by aerobic glycolysis, resulting in supressed mitochondrial function, a state that helps resistance to apoptosis. This characteristic has been widely accepted as a hallmark of cancer and has been shown to be of critical importance in tumour development. The bioenergetic differences between normal and malignant cells are being exploited to identify potential cancer specific therapeutics. Improved in-vitro models are required to aid the identification and assessment of candidate drugs. In this project, we investigated the bioenergetic phenotypes of a panel of adult and paediatric cancer cell lines and evaluated the potential of 3D models as a platform for testing drugs that target cancer metabolism. We also investigated a novel method to assess mitochondrial function that enables the quantification of the level of oxygenation within the cell. <strong>Results:</strong> The results presented in this thesis show that not all cancers display this aerobic glycolytic phenotype. We found that while some cell lines displayed the Warburg phenotype others displayed high levels of oxidative metabolism. These bioenergetic profiles need to be considered when deciding which anti-cancer drugs to use in a chemotherapeutic regime. If a bioenergetic pattern can be identified it may one day form the basis of a screening strategy for tumours. Dichloroacetate (DCA) is a small molecule PDK inhibitor that was investigated in this study. It was found to be relatively non-toxic to cells cultured in 2D but had improved toxicity when the cells were cultured in a 3D environment. Lastly, we evaluated a new oxygen sensing nanoprobe, Mito-Xpress Intra, and the results demonstrate its potential as a non-invasive means of measuring oxygen concentrations within the cell in real time as well as highlighting some striking differences between applied ambient and measured intracellular oxygen concentrations. <strong>Conclusion:</strong> The findings suggest that not all cancers display the characteristic glycolytic phenotype. They also highlight the importance of controlling oxygen and glucose levels when evaluating metabolism and when drug testing.
18

The Role of Fatty Acid Synthase Over-expression in Human Breast Cancer

Hopperton, Kathryn 20 November 2012 (has links)
Fatty acid synthase (FAS) is over-expressed in many human cancers and its activity is required for cancer cell survival. To understand why FAS is over-expressed, we compared in breast cancer cells the utilization of fatty acids synthesized endogenously by FAS to those supplied exogenously in the culture medium. We found that endogenously synthesized fatty acids are esterified to the same lipid and phospholipid classes in the same proportions as those derived exogenously and that some endogenous fatty acids are excreted. Thus, FAS over-expression in cancer does not fulfill a specific requirement for endogenously synthesized fatty acids. We next investigated whether lipogenic activity mediated by FAS was, instead, involved in the maintenance of high glycolytic activity in cancer cells. By culturing breast cancer and non-cancer cells in anoxic conditions, we increased glycolysis 2-3 fold but observed no concomitant increase in lipogenesis. More research is needed to understand why FAS is over-expressed in cancer.
19

The role of Mcl-1 in the response of human colorectal cancer cells to treatment with dichloroacetate

Delaney, Leanne 26 August 2013 (has links)
Dichloroacetate (DCA) it a metabolic reprogramming agent that is used to target the unique metabolism of cancer cells, but is not always effective in colorectal cancer cells. In HCT116 cells, DCA was unable to induce apoptosis, but did decrease proliferation when compared to untreated cells. A decrease in full length Mcl-1 protein expression 7 hours following DCA treatment did not correspond with changes in mRNA production or changes in expression of inhibitory binding partners, but may be due to altered proteasomal degradation. Similar reduction in levels of a lower molecular weight Mcl-1 band occurred, which did not result from alternative splicing or from caspase-mediated cleavage. Mcl-1 showed primarily nuclear localization within the cell, and expression changes in full-length Mcl-1 were seen in nuclear lysate but not cytoplasmic lysate after 7 hours of DCA treatment. Changes in nuclear Mcl-1 expression did not correspond with cell cycle arrest or progression. These results suggest that proteasomal degradation of Mcl-1 may be altered following treatment with DCA, and this change may be associated with decreased proliferation, independent of cell cycle arrest. This may indicate a novel role of nuclear Mcl-1 in response of colorectal cancer to DCA exposure. / Final thesis for Leanne Delaney in partial fulfillment of requirements for the degree of Master of Science in Biomedical Sciences / NSERC
20

The Role of Fatty Acid Synthase Over-expression in Human Breast Cancer

Hopperton, Kathryn 20 November 2012 (has links)
Fatty acid synthase (FAS) is over-expressed in many human cancers and its activity is required for cancer cell survival. To understand why FAS is over-expressed, we compared in breast cancer cells the utilization of fatty acids synthesized endogenously by FAS to those supplied exogenously in the culture medium. We found that endogenously synthesized fatty acids are esterified to the same lipid and phospholipid classes in the same proportions as those derived exogenously and that some endogenous fatty acids are excreted. Thus, FAS over-expression in cancer does not fulfill a specific requirement for endogenously synthesized fatty acids. We next investigated whether lipogenic activity mediated by FAS was, instead, involved in the maintenance of high glycolytic activity in cancer cells. By culturing breast cancer and non-cancer cells in anoxic conditions, we increased glycolysis 2-3 fold but observed no concomitant increase in lipogenesis. More research is needed to understand why FAS is over-expressed in cancer.

Page generated in 0.0927 seconds