• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cannabinoid influences on appetite regulation

Williams, Claire January 1999 (has links)
No description available.
2

CANNABINOID RECEPTORS IN THE 3D RECONSTRUCTED MOUSE BRAIN: FUNCTION AND REGULATION

Nguyen, Peter 05 August 2010 (has links)
CB1 receptors (CB1R) mediate the psychoactive and therapeutic effects of cannabinoids including ∆9-tetrahydrocannabinol (THC), the main psychoactive constituent in marijuana. However, therapeutic use is limited by side effects and tolerance and dependence with chronic administration. Tolerance to cannabinoid-mediated effects is associated with CB1R adaptations, including desensitization (receptor-G-protein uncoupling) and downregulation (receptor degradation). The objectives of this thesis are to investigate the regional-specificity in CB1R function and regulation. Previous studies have investigated CB1Rs in a subset of regions involved in cannabinoid effects, but an inclusive regional comparison of the relative efficacies of different classes of cannabinoids to activate G-proteins has not been conducted. A novel unbiased whole-brain analysis was developed based on Statistical Parametric Mapping (SPM) for 3D-reconstructed mouse brain images derived from agonist-stimulated [35S]GTPgS autoradiography, which has not been described before. SPM demonstrated regional differences in the relative efficacies of cannabinoid agonists methanandamide (M-AEA), CP55,940 (CP), and WIN55,212-2 (WIN) in mouse brains. To assess potential contribution of novel sites, CB1R knockout (KO) mice were used. SPM analysis revealed that WIN, but not CP or M-AEA, stimulated [35S]GTPgS binding in regions that partially overlapped with the expression of CB1Rs. We then examined the role of the regulatory protein Beta-arrestin-2 (βarr2) in CB1R adaptations to chronic THC treatment. Deletion of βarr2 reduced CB1R desensitization/downregulation in the cerebellum, caudal periaqueductal gray (PAG), and spinal cord. However in hippocampus, amygdala and rostral PAG, similar desensitization was present in both genotypes. Interestingly, enhanced desensitization was found in the hypothalamus and cortex in βarr2 KO animals. Intra-regional differences in the magnitude of desensitization were noted in the caudal hippocampus, where βarr2 KO animals exhibited greater desensitization compared to WT. Regional differences in βarr2-mediated CB1R adaptation were associated with differential effects on tolerance, where THC-mediated antinociception, but not catalepsy or hypothermia, was attenuated in βarr2 KO mice. Overall, studies using SPM revealed intra- and inter-regional specificity in the function and regulation of CB1Rs and underscores an advantage of using a whole-brain unbiased approach. Understanding the regulation of CB1R signaling within different anatomical contexts represents an important fundamental prerequisite in the therapeutic exploitation of the cannabinoid system.
3

Inflammatory Regulation of Cysteine Cathepsins

Creasy, Blaine 25 April 2008 (has links)
Cysteine cathepsins B, L and S are endosomal/lysosomal proteases that participate in numerous physiological systems. Cathepsin expression and activity are altered during various inflammatory diseases, including rheumatoid arthritis, atherosclerosis, neurodegenerative diseases and cancers. Early immune responses to microbial pathogens are mediated by pattern-recognition receptors, including Toll-like receptors (TLR). Signaling through TLR causes cell activation and release of inflammatory mediators, which can contribute to the severity of chronic inflammatory diseases. The impact of TLR cell activation on cathepsins B, L and S activities was investigated using live-cell enzymatic assays. Individual ligands of TLR4, TLR2 and TLR3 increased intracellular activities of the three cathepsins indicating the involvement of both MyD88-dependent and -independent pathways. To investigate the role of inflammatory cytokines in regulating these proteases, a lipopolysaccharide (LPS) non-responsive cell line was utilized. LPS non-responsive cells co-cultured with LPS responsive macrophages upregulated cathepsin activities. Furthermore, culture supernatants from LPS-stimulated macrophages increased cathepsin activities in LPS non-responsive cells, which could be reduced by neutralizing antibodies to TNF-α or IL-1β. These findings indicate cytokines regulate cathepsin activities during macrophage responses to TLR stimulation. Using LPS as a model for inflammation, the ability of the cannabinoids, delta9-tetrahydrocannabinol (THC), and CP55940 to suppress cysteine cathepsins during an inflammatory response was investigated. Cannabinoids, including the major psychoactive component of marijuana THC, modulate a variety of immune responses and have been proposed as possible therapeutics to control chronic inflammation. Cannabinoids may mediate their effects through receptor-dependent or independent mechanisms. Cannabinoid receptor subtype 1 (CB1) and receptor subtype 2 (CB2) have differential expression in leukocytes. Dose response studies showed that 1 nM THC was sufficient to inhibit cathepsin enhancement in LPS-stimulated cells. P388D1 macrophages expressed CB2 mRNA, but had no detectable CB1 mRNA indicating a role for the CB2 receptor. Utilizing a CB2-/- macrophage cell line, the role of CB2 receptor participation in THC inhibition of cysteine cathepsin upregulation was explored. THC did not affect cathepsin activity in LPS-stimulated cells lacking CB2 expression. These findings support the possibility of receptor selective agonists as therapeutic treatment during inflammatory diseases to prevent cathepsin involvement in pathological tissue destruction.
4

Synthesis and Development of Potential CB1 Receptor Neutral Antagonists

Slaughter, Kimari 18 May 2012 (has links)
Cannabis and its derivatives have been used for both medicinal and recreational purposes. The study of this plant led to the discovery of over 60 cannabinoids, found exclusively in cannabis, that contribute to the behavioral effects of cannabis use, the most common is delta-9-tetrahydrocannabinol. Cannabinoid receptors function to increase activity in the mesolimbic dopamine reward system. Dopamine is a neurotransmitter that plays a major role in addition and its regulation plays a crucial role in mental and physical well-being. There is evidence that CB1 receptors are important to the reinforcing effects and the development of physical dependence on opiate drugs. Studies have shown that increased levels of dopamine are consistent with addiction while reduced levels lead to a decline in recreational use. The goal of this research is to design, synthesize and develop potential CB1 receptors that exhibit a neutral cannabinoid antagonist pharmacological profile.
5

Brain-derived neurotrophic factor and endocannabinoid functions i GABAergic interneuron development /

Berghuis, Paul, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
6

First in Class (S,E)-11-[2-(Arylmethylene)Hydrazono]-PBD Analogs as Selective CB2 Modulators Targeting Neurodegenerative Disorders

Mingle, David, Ospanov, Meirambek, Radwan, Mohamed O., Ashpole, Nicole, Otsuka, Masami, Ross, Samir A., Walker, Larry A., Shilabin, Abbas G., Ibrahim, Mohamed A. 01 January 2021 (has links)
Newly designed pyrrolo[2,1-c][1,4]benzodiazepines tricyclic skeleton has shown potential clusters of cannabinoid receptors CB1/CB2 selective ligands. CB2 plays a critical role in microglial-derived neuroinflammation, where it modulates cell proliferation, migration, and differentiation into M1 or M2 phenotypes. Beginning with computer-based docking studies accounting the recently discovered X-ray crystal structure of CB2, we designed a series of PBD analogs as potential ligands of CB2 and tested their binding affinities. Interestingly, computational studies and theoretical binding affinities of several selected (S,E)-11-[2-(arylmethylene)hydrazono]-PBD analogs, have revealed the presence of potential selectivity in binding attraction toward CB1 and CB2. Reported here is the discovery of the first representatives of this series of selective binding to CB2. Preliminary data showed that this class of molecules display potential binding efficacy toward the cannabinoid receptors tested. Intriguingly, initial cannabinoid binding assay showed a selective binding affinity of 4g and 4h showed Ki of 0.49 and 4.7 μM toward CB2 receptors while no binding was observed to CB1. The designed leads have shown remarkable stability pattern at the physiological pH magnifying their therapeutic values. We hypothesize that the PBD tricyclic structure offers the molecule an appropriate three-dimensional conformation to fit snugly within the active site of CB2 receptors, giving them superiority over the reported CB2 agonists/inverse agonists. Our findings suggested that the attachment of heterocyclic ring through the condensation of diazepine hydrazone and S- or N-heterocyclic aldehydes enhances the selectivity of CB2 over CB1. [Figure not available: see fulltext.].
7

Zánětem vyvolané změny v expresi kanabinoidních receptorů v ptačím mozku / Inflammation-associated changes in cannabinoid receptor expression in avian brain

Divín, Daniel January 2020 (has links)
(EN) Research in interactions between the nervous and immune systems is focused mainly on mammals, while in other vertebrates, including birds, it remains neglected. Two types of cannabinoid receptors interconnect the nervous and immune systems: CB1, which is in mammals involved in regulation of neural processes, and CB2, which is in mammals involved in regulation of immune processes. However, little is presently known about the roles of these receptors in nervous and especially immune processes in birds. Therefore, in this work I focus on the expression of cannabinoid receptors in cognitively advanced bird species (parrots, passerines) during induced sterile peritoneal inflammation. Unlike passerines, parrots appear to lack the gene for CB2, which may affect the inflammation regulation. I have revealed no changes in the expression of these receptors during peritoneal inflammation neither in parrots, nor in songbirds. Nevertheless, the increase in expression of the proinflammatory cytokine IL- 1β in the brain in parrots confirms the importance of neuroimmune interaction and mutual influences along the gut-brain axis. This work suggests that even in birds, the central nervous system is affected by inflammation through the gut-brain axis. The expression of cannabinoid receptors does not change much...
8

The Signaling Pathway of Oxysterol-Induced Apoptosis in Macrophages.

Freeman, Natalie Elaine 17 December 2005 (has links) (PDF)
Oxidized low-density lipoproteins (OxLDL) mediate many of the pathological events associated with atherosclerosis. Oxysterols, the major cytotoxic component of OxLDL, induce apoptosis in macrophages by a calcium flux mediated activation of cytosolic phospholipase A2 resulting in the release of arachidonic acid (AA). Inhibition of AA metabolism has been shown to protect macrophages from oxysterol-induced apoptosis. The current study explores the steps in the oxysterol-induced apoptosis signaling pathway in murine macrophages subsequent to the liberation of AA. To elucidate this mechanism, two oxysterols, 7-ketocholesterol and 25-hydroxycholesterol (25-OHC), were used to induce apoptosis in murine macrophage cell lines (P388D1, and Raw 264.7) and mouse peritoneal macrophages (MPMs). Pharmacological inhibition of eicosanoid synthesis or genetic knockout of important eicosanoid biosynthetic genes had no significant effect on the induction of apoptosis by oxysterols in macrophages. The induction of apoptosis in macrophage cell lines and MPMs by oxysterols and OxLDL was suppressed by Sandoz 58-035, an inhibitor of acyl-CoA: cholesterol acyltransferase (ACAT). Furthermore, in comparison to wild-type MPMs, ACAT-1 deficient MPMs were found to be resistant to apoptosis induced by oxysterols or OxLDL. Macrophages treated with 7KC accumulated ACAT-derived cholesteryl and 7-ketocholesteryl esters. An inhibitor of cholesterol trafficking, U18666A, specifically prevented the accumulation of cholesteryl esters, but not 7-ketocholesteryl esters nor the induction of apoptosis. An inhibitor of cPLA2 prevented the accumulation of 7-ketocholesteryl esters. This inhibition was reversed by supplementing oleic acid or AA; however, only AA supplementation restored the induction of apoptosis. These results suggest that oxysterols not only initiate the apoptosis pathway by activating cPLA2, but also participate in the downstream signaling pathway when esterified by ACAT to form arachidonyl oxysterols. We also demonstrate that macrophages lacking the cannabinoid type-2 (CB2) receptor have reduced levels of apoptosis when treated with oxysterols or OxLDL in comparison to wild-type macrophages and that a CB2 specific antagonist blocks oxysterol-induced apoptosis in macrophages suggesting that the CB2 receptor is involved in this pathway, perhaps by interacting with the arachidonyl oxysterols.
9

Le rôle des récepteurs aux cannabinoïdes CB1 et CB2 dans le guidage axonal

Argaw, Anteneh 12 1900 (has links)
Au cours du développement, les axones des cellules ganglionnaires de la rétine (CGRs) voyagent sur de longues distances pour établir des connexions avec leurs cellules cibles. La navigation des cônes de croissance est guidée par différentes molécules chimiotropiques présentes dans leur environnement. Les endocannabinoïdes (eCB) sont d’importants neuromodulateurs qui régulent de manière rétrograde la fonction de nombreuses synapses du cerveau. Ils agissent principalement par le biais de leurs récepteurs liés à une protéine Gi/o CB1 (CB1R) et CB2 (CB2R). La présence des eCBs durant le stade fœtal et la période postnatale suggère leur implication dans des événements régulant le développement du système nerveux. Cette thèse confirme l’expression des récepteurs aux cannabinoïdes CB1 et CB2 ainsi que l’enzyme dégradant les eCBs lors du développement embryonnaire et perinatal des CGRs et de la voie rétinothalamique in vivo. La manipulation pharmacologique de l’activité de CB1R et CB2R réorganise la morphologie du cône de croissance des CGRs et des neurones corticaux in vitro. De plus, la stimulation locale avec un agoniste de CB1R ou de CB2R modifie le comportement du cône de croissance entraînant sa répulsion. CB1R et CB2R modulent par le biais de la voie de signalisation AMPc/PKA, la mobilisation de DCC à la membrane plasmique. Par ailleurs, les résultats de cette recherche démontrent également l’implication de CB1R et CB2R dans la ségrégation des projections ipsi- et controlatérales et le développement de la voie rétinothalamique. / Following differentiation, retinal ganglion cell (RGC) axons, tipped at their distal end by the growth cone (GC), navigate through relatively long distances in a highly directed manner in order to establish functional synapses with thalamic and superior colliculus (SC) neurons. This is achieved with the help of extracellular guidance molecules which steer RGC axon growth by regulating GC morphology by means of attractive and/or repulsive mechanisms. In the adult brain, endocannabinoids (eCBs) exert an important neuromodulatory function by acting as retrograde messengers to regulate the function of many synapses. Endocannabinoids act mainly via their Gi/o protein coupled receptors CB1 (CB1R) and CB2 (CB2R). Due to their presence at the fetal and early postnatal periods, it has been proposed that eCBs and their receptors might be involved in several developmental events, such as cell proliferation and migration, axon guidance and synaptogenesis. We observed that during early postnatal development, components of the eCB system are expressed along the visual pathway (the optic chiasm, the lateral geniculate nucleus and the SC). To assess the implication of the eCB system, in vitro, embryonic retinal explant and primary neuron cultures were treated with pharmacological agonists and inverse agonists of CB1R and CB2R. These experiments demonstrated that these cannabinoid receptors modify the GC’s morphology. Most importantly, CB1R and CB2R act through the cAMP/PKA pathway to modulate the presence of DCC at the plasma membrane. In vivo, CB1R and CB2R play a major role and the absence of either one of them induces a decrease in eye-specific segregation of retinal projections. These results show an implication of CB1R and CB2R during RGC growth and retinothalamic development.
10

Le rôle des récepteurs aux cannabinoïdes CB1 et CB2 dans le guidage axonal

Argaw, Anteneh 12 1900 (has links)
Au cours du développement, les axones des cellules ganglionnaires de la rétine (CGRs) voyagent sur de longues distances pour établir des connexions avec leurs cellules cibles. La navigation des cônes de croissance est guidée par différentes molécules chimiotropiques présentes dans leur environnement. Les endocannabinoïdes (eCB) sont d’importants neuromodulateurs qui régulent de manière rétrograde la fonction de nombreuses synapses du cerveau. Ils agissent principalement par le biais de leurs récepteurs liés à une protéine Gi/o CB1 (CB1R) et CB2 (CB2R). La présence des eCBs durant le stade fœtal et la période postnatale suggère leur implication dans des événements régulant le développement du système nerveux. Cette thèse confirme l’expression des récepteurs aux cannabinoïdes CB1 et CB2 ainsi que l’enzyme dégradant les eCBs lors du développement embryonnaire et perinatal des CGRs et de la voie rétinothalamique in vivo. La manipulation pharmacologique de l’activité de CB1R et CB2R réorganise la morphologie du cône de croissance des CGRs et des neurones corticaux in vitro. De plus, la stimulation locale avec un agoniste de CB1R ou de CB2R modifie le comportement du cône de croissance entraînant sa répulsion. CB1R et CB2R modulent par le biais de la voie de signalisation AMPc/PKA, la mobilisation de DCC à la membrane plasmique. Par ailleurs, les résultats de cette recherche démontrent également l’implication de CB1R et CB2R dans la ségrégation des projections ipsi- et controlatérales et le développement de la voie rétinothalamique. / Following differentiation, retinal ganglion cell (RGC) axons, tipped at their distal end by the growth cone (GC), navigate through relatively long distances in a highly directed manner in order to establish functional synapses with thalamic and superior colliculus (SC) neurons. This is achieved with the help of extracellular guidance molecules which steer RGC axon growth by regulating GC morphology by means of attractive and/or repulsive mechanisms. In the adult brain, endocannabinoids (eCBs) exert an important neuromodulatory function by acting as retrograde messengers to regulate the function of many synapses. Endocannabinoids act mainly via their Gi/o protein coupled receptors CB1 (CB1R) and CB2 (CB2R). Due to their presence at the fetal and early postnatal periods, it has been proposed that eCBs and their receptors might be involved in several developmental events, such as cell proliferation and migration, axon guidance and synaptogenesis. We observed that during early postnatal development, components of the eCB system are expressed along the visual pathway (the optic chiasm, the lateral geniculate nucleus and the SC). To assess the implication of the eCB system, in vitro, embryonic retinal explant and primary neuron cultures were treated with pharmacological agonists and inverse agonists of CB1R and CB2R. These experiments demonstrated that these cannabinoid receptors modify the GC’s morphology. Most importantly, CB1R and CB2R act through the cAMP/PKA pathway to modulate the presence of DCC at the plasma membrane. In vivo, CB1R and CB2R play a major role and the absence of either one of them induces a decrease in eye-specific segregation of retinal projections. These results show an implication of CB1R and CB2R during RGC growth and retinothalamic development.

Page generated in 0.0707 seconds