1 |
Passive and non-mechanical pumping in microfluidic devicesWaghmare, Prashant Rakhmaji Unknown Date
No description available.
|
2 |
Enhanced mass transport in graphene nanofluidic channelsXie, Quan 20 February 2018 (has links)
Enhanced mass transport in carbon-based nanoscale conduits (e.g. carbon nanotubes, graphene nanochannels/capillaries, graphene/graphene oxide membranes) has attracted tremendous interest over the last decade due to its significant implications for water desalination/purification, nanofiltration, electronic cooling, battery/fuel cells, and lab-on-a-chip. Further development of carbon-based nanoscale conduits for practical applications relies on understanding fundamental mechanisms of transport through individual conduits, which have not been well studied due to challenges in fabrication and measurement. In this thesis, the construction of two-dimensional planar graphene nanochannel devices and the studies of enhanced water and ion transport inside the graphene nanochannels are reported for the first time.
The graphene nanochannels are fabricated by conformally covering high-quality graphene on the surfaces of silica nanochannels. A new fabrication scheme consisting of graphene wet transfer, graphene patterning and vacuum anodic bonding is developed to create such graphene nanochannels with heights ranging from 24 to 124 nm.
Using these nanochannels and a new hybrid nanochannel based capillary flow measurement technique, we successfully measured the hydraulic resistance (water permeability) of single graphene nanochannels. Our results demonstrate that the frictionless surface of graphene induces a boundary slip and enhances water flow inside the graphene nanochannel. The measured slip length of graphene in the graphene nanochannels poses a median value around 16 nm, albeit with a large variation from 0 to 200 nm regardless of the channel height. The small-yet-widely-varying values of the graphene slip length are attributed to the surface charge of graphene and the interaction between graphene and underneath silica substrate, which are in good agreement with the prediction of our molecular dynamics (MD) simulation.
In addition, we also investigated enhanced ion transport inside the graphene nanochannels. Higher electroosmotic conductance at low electrolyte concentrations (10-6 M~10-2 M) is observed in graphene nanochannels when compared with silica nanochannels with the same geometry. Our results suggest that the enhanced electroosmotic flow is also due to the boundary slip at the graphene/electrolyte interface. Besides, our analysis shows that the surface charge on the graphene, originating from the dissociation of oxygen-containing functional groups, is crucial to the enhanced electroosmotic flow inside nanochannels.
|
3 |
Nanofluidics : a theoretical and numerical investigation of fluid transport in nanochannels / Nanofluidique : une investigation théorique et numérique du transport fluidique dans les nanocannauxGravelle, Simon 17 November 2015 (has links)
Cette thèse décrit diverses situations liées au transport fluidique aux nano-échelles. Le premier chapitre est une introduction à la nanofluidique qui contient une revue des longueurs caractéristiques, des forces et des phénomènes présents aux nano-échelles. Le deuxième chapitre est une étude de l'impact de la géométrie sur la perméabilité hydrodynamique d'un nanopore. Inspirée par la forme des aquaporines, cette étude suggère une optimisation possible pour des canaux biconiques. Le troisième chapitre est une étude du remplissage capillaire dans des canaux sub-nanométriques en carbone. Cette étude montre l'importance de la pression de disjonction induite par la structure du fluide sur le remplissage. Le quatrième chapitre est une étude d'une diode nanofluidique, un composant connu pour imiter le comportement d'une diode à semi-conducteur. On montre qu'un fort couplage entre l'eau et la dynamique des ions entraîne une rectification du flux d'eau à l'intérieur de la diode. Le cinquième et dernier chapitre est une étude de l'origine du bruit rose (1=f) communément observé lors des mesures de courant ionique dans les nanopores / This thesis discusses various situations linked to transport at the nanoscale. The first chapter is an introduction to nanofluidics, containing a review of characteristic lengths, forces, or phenomena existing at the nanoscale. The second chapter is a study of the impact of geometry on the hydrodynamic permeability of a nanopore. This study, inspired by the shape of aquaporins, suggests a possible optimisation of permeability for bi-conical channels. The third chapter is a study of capillary filing inside subnanometric carbon channels which highlights the importance of the disjoining pressure induced by the fluid structuring inside the nanochannel. The fourth chapter is a study of nanofluidic diode, a component known to mimic the behaviour of semiconductor diode. The study highlights a strong coupling between water and ion dynamics which leads to a water flow rectification inside the diode. The fifth and last chapter is a study of the origin of commonly observed pink noise (1=f) in ionic current measurements through nanopores
|
Page generated in 0.0834 seconds