• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Flatness Gauge for Hot Rolling Mills

Larsson, Oliver January 2015 (has links)
In the steel industry, laser triangulation based measurement systems can be utilizedfor evaluating the flatness of the steel products. Shapeline is a company in Linköpingthat manufactures such measurement systems. This thesis work will present a series ofexperiments on a Shapeline measurement system in a relatively untested environment, thehot rolling mill at SSAB in Borlänge.The purpose of this work is to evaluate how the conditions at a hot rolling mill affectsthe measurement performance. It has been anticipated that measuring in high temperatureenvironment would introduce difficulties that do not exist when measuring in cold environments.A number of different experiments were conducted, where equipment such as laserand camera bandpass filter were alternated. Via the experiments, information about noisedue to the environment in the hot rolling mill was gained. The most significant noise wascaused by heat shimmering. Using the presented methods, the magnitude and frequencyspectrum of the heat shimmering noise could be determined. The results also indicates thatheat shimmering cause large errors and is quite troublesome to counter. In addition to this,the quality of the line detections under the hot rolling mill circumstances was examined. Itcould be observed that the line detections did not introduce any significant errors despitethe harmful conditions.
2

Low Intensity Natural Sounds and Pink Noise’s Effect on Attention

Niklasson, Lucas January 2019 (has links)
Bakgrundsljud och hur det influerar människors uppmärksamhet är undersökt i ett flertal olika former. Vanligtvis genom att använda musik och tystnad som variabler för att jämföra effekten på en primär kognitiv uppgift. Eftersom all musik skapas med intentionen att lyssnas på, dvs. att dra uppmärksamheten till sig, söker denna studie att undersöka huruvida bakgrundsljud ligger till grund för olika reaktionstid beroende på om ljudet är artificiellt eller naturligt (ljud från naturen som en strömmande bäck jämfört med rosa brus). Genom att använda ett visuellt oddball-paradigm på ett reaktionstids-test med de två bakomliggande ljuden på en population (N = 30) där snittåldern var 29 (M = 29.70, SD = 7,82). T-testet bekräftade hypotesen. Därför fastslår denna tes att rosa brus ger längre tid på reaktionstids-test än naturliga ljud när de presenteras som bakgrundsljud. / Background noise and how it influences attention in humans is researched in various ways and forms. Usually it has been done by using music and silence to compare the effects on a primary cognitive task. Since music is an artificial sound created with the intention to draw attention to it, the present study sought to determine if background noise cause differences in reaction time whether it was artificial noise or natural noise (such as the sound of a stream of water compared to pink noise). The two background noises were compared through a visual oddball paradigm measuring reaction time on a sample (N = 30) whose mean age was 29 years (M = 29.70, SD = 7,82). The paired t-test confirmed the hypothesis. Therefore, this study concludes that pink noise creates longer reactions compared to natural sounds when presented as background noise.
3

Nanofluidics : a theoretical and numerical investigation of fluid transport in nanochannels / Nanofluidique : une investigation théorique et numérique du transport fluidique dans les nanocannaux

Gravelle, Simon 17 November 2015 (has links)
Cette thèse décrit diverses situations liées au transport fluidique aux nano-échelles. Le premier chapitre est une introduction à la nanofluidique qui contient une revue des longueurs caractéristiques, des forces et des phénomènes présents aux nano-échelles. Le deuxième chapitre est une étude de l'impact de la géométrie sur la perméabilité hydrodynamique d'un nanopore. Inspirée par la forme des aquaporines, cette étude suggère une optimisation possible pour des canaux biconiques. Le troisième chapitre est une étude du remplissage capillaire dans des canaux sub-nanométriques en carbone. Cette étude montre l'importance de la pression de disjonction induite par la structure du fluide sur le remplissage. Le quatrième chapitre est une étude d'une diode nanofluidique, un composant connu pour imiter le comportement d'une diode à semi-conducteur. On montre qu'un fort couplage entre l'eau et la dynamique des ions entraîne une rectification du flux d'eau à l'intérieur de la diode. Le cinquième et dernier chapitre est une étude de l'origine du bruit rose (1=f) communément observé lors des mesures de courant ionique dans les nanopores / This thesis discusses various situations linked to transport at the nanoscale. The first chapter is an introduction to nanofluidics, containing a review of characteristic lengths, forces, or phenomena existing at the nanoscale. The second chapter is a study of the impact of geometry on the hydrodynamic permeability of a nanopore. This study, inspired by the shape of aquaporins, suggests a possible optimisation of permeability for bi-conical channels. The third chapter is a study of capillary filing inside subnanometric carbon channels which highlights the importance of the disjoining pressure induced by the fluid structuring inside the nanochannel. The fourth chapter is a study of nanofluidic diode, a component known to mimic the behaviour of semiconductor diode. The study highlights a strong coupling between water and ion dynamics which leads to a water flow rectification inside the diode. The fifth and last chapter is a study of the origin of commonly observed pink noise (1=f) in ionic current measurements through nanopores
4

Macroscopic insights from mechanistic ecological network models in a data void

Lin, Yangchen January 2015 (has links)
Complexity science has come into the limelight in recent years as the scientific community begins to grapple with higher-order natural phenomena that cannot be fully explained via the behaviour of components at lower levels of organization. Network modeling and analysis, being a powerful tool that can capture the interconnections that embody complex behaviour, has therefore been at the forefront of complexity science. In ecology, the network paradigm is relatively young and there remain limitations in many ecological network studies, such as modeling only one type of species interaction at a time, lack of realistic network structure, or non-inclusion of community dynamics and environmental stochasticity. I introduce bioenergetic network models that bring together for the first time many of the fundamental structures and mechanisms of species interactions present in real ecological communities. I then use these models to address some outstanding questions that are relevant to understanding ecological networks at the systems level rather than at the level of subsets of interactions. Firstly, I find that realistic red-shifted environmental noise, and synchrony of species responses to noise, are associated with increased variability in ecosystem properties, with implications for predictive ecological modeling which usually assumes white noise. Next, I look at simultaneous species extinction and invasion, finding that as their individual impacts increase, their combined impact becomes decreasingly additive. In addition, the greater the impact of extinction or invasion, the lesser their reversibility via reintroduction or eradication of the species in question. For modifications of pairwise species interactions by third-party species, a phenomenon that has so far been studied one interaction at a time, I find that the many interaction modifications that occur concurrently in a community can collectively have systematic effects on total biomass and species evenness. Finally, examining a higher level of organization in the form of compartmentalized networks, I find that the relationship between intercompartment connectivity and the impacts of species decline depends considerably on network topology and whether the consumer-resource functional response is prey- or ratio-dependent. Overall, the results vary considerably across model communities with different parameterizations, underscoring the contingency and context dependence of nature that scientists and policy makers alike should no longer ignore. This work hopes to contribute to a growing multidisciplinary understanding, appreciation and management of complex systems that is fundamentally transforming the modern world and giving us insights on how to live more harmoniously within our environment.
5

Application of Wavelets to Filtering and Analysis of Self-Similar Signals

Wirsing, Karlton 30 June 2014 (has links)
Digital Signal Processing has been dominated by the Fourier transform since the Fast Fourier Transform (FFT) was developed in 1965 by Cooley and Tukey. In the 1980's a new transform was developed called the wavelet transform, even though the first wavelet goes back to 1910. With the Fourier transform, all information about localized changes in signal features are spread out across the entire signal space, making local features global in scope. Wavelets are able to retain localized information about the signal by applying a function of a limited duration, also called a wavelet, to the signal. As with the Fourier transform, the discrete wavelet transform has an inverse transform, which allows us to make changes in a signal in the wavelet domain and then transform it back in the time domain. In this thesis, we have investigated the filtering properties of this technique and analyzed its performance under various settings. Another popular application of wavelet transform is data compression, such as described in the JPEG 2000 standard and compressed digital storage of fingerprints developed by the FBI. Previous work on filtering has focused on the discrete wavelet transform. Here, we extended that method to the stationary wavelet transform and found that it gives a performance boost of as much as 9 dB over that of the discrete wavelet transform. We also found that the SNR of noise filtering decreases as a frequency of the base signal increases up to the Nyquist limit for both the discrete and stationary wavelet transforms. Besides filtering the signal, the discrete wavelet transform can also be used to estimate the standard deviation of the white noise present in the signal. We extended the developed estimator for the discrete wavelet transform to the stationary wavelet transform. As with filtering, it is found that the quality of the estimate decreases as the frequency of the base signal increases. Many interesting signals are self-similar, which means that one of their properties is invariant on many different scales. One popular example is strict self-similarity, where an exact copy of a signal is replicated on many scales, but the most common property is statistical self-similarity, where a random segment of a signal is replicated on many different scales. In this work, we investigated wavelet-based methods to detect statistical self-similarities in a signal and their performance on various types of self-similar signals. Specifically, we found that the quality of the estimate depends on the type of the units of the signal being investigated for low Hurst exponent and on the type of edge padding being used for high Hurst exponent. / Master of Science
6

Akustická stimulácia pomalovlnného spánku a jej vplyv na konsolidáciu pamäti u ľudí trpiacich nespavosťou / Acoustic stimulation of Slow wave sleep and its influence on consolidation of declarative memory in insomnia

Orendáčová, Mária January 2019 (has links)
Slow-wave sleep plays an important role in consolidation of declarative memory. From electrophysiological point of view, this process is dependent on a common occurrence and mutual integration of neocortical slow oscillations (< 1 Hz), hippocampal sharp-wave ripples (150-250 Hz) and thalamo-cortical sleep spindles (10-15 Hz). Previous studies demonstrated that periodic acoustic stimulation by pink noise pulses applied at frequency of sleep slow oscillation during slow wave sleep leads to prolongation of slow wave sleep and to enhancement in declarative memory performance in normal sleepers. Our study investigated this kind of periodic acoustic stimulation in its relation to sleep architecture and declarative memory of people suffering from insomnia due to which there often comes to a reduction in slow wave sleep which positively correlates with worsening of declarative memory performance. Our aim was to investigate if this kind of comparatively non-invasive brain stimulation has a potential to increase a total length of slow wave sleep and enhance declarative memory performance in insomnia. Our study revealed acoustic stimulation neither improved declarative memory performance nor it increased total length of slow-wave sleep. No positive association was found between level of declarative memory...

Page generated in 0.056 seconds