• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbon-enhanced Photocatalysts for Visible Light Induced Detoxification and Disinfection

Gamage McEvoy, Joanne 14 May 2014 (has links)
Photocatalysis is an advanced oxidation process for the purification and remediation of contaminated waters and wastewaters, and is advantageous over conventional treatment technologies due to its ability to degrade emerging and recalcitrant pollutants. In addition, photocatalytic disinfection is less chemical-intensive than other methods such as chlorination, and can inactivate even highly resistant microorganisms with good efficacy. Process sustainability and cost-effectiveness may be improved by utilizing solar irradiation as the source of necessary photons for photocatalyst excitation. However, solar-induced activity of the traditionally-used titania is poor due to its inefficient visible light absorption, and recombination of photo-excited species is problematic. Additionally, mass transfer limitations and difficulties separating the catalyst from the post-treatment slurry hinder conversions and efficiencies obtainable in practice. In this research, various strategies were explored to address these issues using novel visible light active photocatalysts. Two classes of carbon-enhanced photocatalytic materials were studied: activated carbon adsorbent photocatalyst composites, and carbon-doped TiO2. Adsorbent photocatalyst composites based on activated carbon and plasmonic silver/silver chloride structures were synthesized, characterized, and experimentally investigated for their photocatalytic activity towards the degradation of model organic pollutants (methyl orange dye, phenol) and the inactivation of a model microorganism (Escherichia coli K-12) under visible light. The adsorptive behaviour of the composites towards methyl orange dye was also studied and described according to appropriate models. Photocatalytic bacterial inactivation induced by the prepared composites was investigated, and the inactivation mechanisms and roles of incorporated antimicrobial silver on disinfection were probed and discussed. These composites were extended towards magnetic removal strategies for post-use separation through the incorporation of magnetic nanoparticles to prepare Ag/AgCl-magnetic activated carbon composites, and the effect of nanoparticles addition on the properties and photoactivities of the resulting materials was explored. Another silver/silver halide adsorbent photocatalyst composite based on activated carbon and Ag/AgBr exhibiting visible light absorption due to both localized surface plasmon resonance and optical band gap absorption was synthesized and its photocatalytic activity towards organics degradation and microbial inactivation was studied. Carbon-doped mixed-phase titania was also prepared and experimentally investigated.
2

Carbon-enhanced Photocatalysts for Visible Light Induced Detoxification and Disinfection

Gamage McEvoy, Joanne January 2014 (has links)
Photocatalysis is an advanced oxidation process for the purification and remediation of contaminated waters and wastewaters, and is advantageous over conventional treatment technologies due to its ability to degrade emerging and recalcitrant pollutants. In addition, photocatalytic disinfection is less chemical-intensive than other methods such as chlorination, and can inactivate even highly resistant microorganisms with good efficacy. Process sustainability and cost-effectiveness may be improved by utilizing solar irradiation as the source of necessary photons for photocatalyst excitation. However, solar-induced activity of the traditionally-used titania is poor due to its inefficient visible light absorption, and recombination of photo-excited species is problematic. Additionally, mass transfer limitations and difficulties separating the catalyst from the post-treatment slurry hinder conversions and efficiencies obtainable in practice. In this research, various strategies were explored to address these issues using novel visible light active photocatalysts. Two classes of carbon-enhanced photocatalytic materials were studied: activated carbon adsorbent photocatalyst composites, and carbon-doped TiO2. Adsorbent photocatalyst composites based on activated carbon and plasmonic silver/silver chloride structures were synthesized, characterized, and experimentally investigated for their photocatalytic activity towards the degradation of model organic pollutants (methyl orange dye, phenol) and the inactivation of a model microorganism (Escherichia coli K-12) under visible light. The adsorptive behaviour of the composites towards methyl orange dye was also studied and described according to appropriate models. Photocatalytic bacterial inactivation induced by the prepared composites was investigated, and the inactivation mechanisms and roles of incorporated antimicrobial silver on disinfection were probed and discussed. These composites were extended towards magnetic removal strategies for post-use separation through the incorporation of magnetic nanoparticles to prepare Ag/AgCl-magnetic activated carbon composites, and the effect of nanoparticles addition on the properties and photoactivities of the resulting materials was explored. Another silver/silver halide adsorbent photocatalyst composite based on activated carbon and Ag/AgBr exhibiting visible light absorption due to both localized surface plasmon resonance and optical band gap absorption was synthesized and its photocatalytic activity towards organics degradation and microbial inactivation was studied. Carbon-doped mixed-phase titania was also prepared and experimentally investigated.
3

Optical studies of GaAs:C grown at low temperature and of localized vibrations in normal GaAs:C

Vijarnwannaluk, Sathon 03 May 2002 (has links)
Optical studies of heavily-doped GaAs:C grown at low temperature by molecular beam epitaxy were performed using room-temperature photoluminescence, infrared transmission, and Raman scattering measurements. The photoluminescence experiments show that in LT-GaAs:C films grown at temperatures below 400 °C, nonradiative recombination processes dominate and photoluminescence is quenched. When the growth temperature exceeds 400 °C, band-to-band photoluminescence emission appears. We conclude that the films change in character from LT-GaAs:C to normal GaAs:C once the growth temperature reaches 400 °C. Annealing, however, shows a different behavior. Once grown as LT-GaAs:C, this material retains its nonconducting nonluminescing LT characteristics even when annealed at 600 °C. The Raman-scattering measurements showed that the growth temperature and the doping concentration influence the position, broadening, and asymmetry of the longitudinal-optical phonon Raman line. We attribute these effects to changes in the concentration of interstitial carbon in the films. Also, the shift of the Raman line was used to estimate the concentration of arsenic-antisite defects in undoped LT-GaAs. The infrared transmission measurements on the carbon-doped material showed that only a fraction of the carbon atoms occupy arsenic sites, that this fraction increases as the growth temperature increases, and that it reaches about 100% once the growth temperature reaches 400 °C. The details of all these measurements are discussed. Infrared transmission and photoluminescence measurements were also carried out on heavily-doped GaAs:C films grown by molecular beam epitaxy at the standard 600 C temperature. The infrared results reveal, for dopings under 5 x 10⁹ cm⁻³, a linear relation between doping concentration and the integrated optical absorption of the carbon localized-vibrational-mode band. At higher dopings, the LVM integrated absorption saturates. Formation of C<sub>As</sub>-C<sub>As</sub> clusters is proposed as the mechanism of the saturation. The photoluminescence spectra were successfully analyzed with a simple model assuming thermalization of photoelectrons to the bottom of the conduction band and indirect-transition recombination with holes populating the degenerately doped valence band. The analysis yields the bandgap reduction and the Fermi-level-depth increase at high doping. / Ph. D.
4

Estudo do comportamento de sinais OSL de BeO e Al2O3:C usando o Modelo OTOR Simplificado e Método dos Mínimos Quadrados / Study of the Behavior of OSL Signals of BeO and Al2O3:C using the Simplified OTOR Model and Least Square Method

Soares, Leonardo dos Reis Leano 02 October 2018 (has links)
A dosimetria das radiações alfa, beta e gama é importante para diversas áreas aplicadas, sendo utilizada na proteção radiológica de pacientes e profissionais que se expõem a esses tipos de radiações. Com estudos dosimétricos pode-se obter melhores estimativas de dose absorvida, e ter mais precisão na estimativa de riscos populacionais. As técnicas de Termoluminescência (TL) e Luminescência Oticamente Estimulada (OSL) são utilizadas para essas aplicações dosimétricas. Estudos recentes têm mostrado que alguns materiais dosimétricos conhecidos como óxido de alumínio dopado com carbono (Al$_2$O$_3$:C) e óxido de berílio (BeO) sofrem mudanças no formato observado dos sinais OSL com relação as taxas de dose e tipos de radiação. O principal objetivo desse trabalho foi analisar os formatos dessas curvas e verificar quantitativamente, se existem ou não mudanças nos formatos dos sinais OSL dos dosímetros irradiados com diferentes tipos de radiação e taxas de dose. Sob o modelo de uma armadilha e um centro de recombinação (OTOR) foram estudados os sinais OSL com estímulo contínuo (CW-OSL). O modelo OTOR é simples, mas não possui solução analítica e as soluções computacionais são custosas pelo número grande de variáveis e parâmetros. Nesse trabalho, foi necessário realizar algumas simplificações para obtenção de um modelo ainda mais simples para ajuste nos dados. O modelo OTOR simples apresenta um comportamento de decaimento exponencial na descrição do sinal CW-OSL. Uma outra abordagem de extensão do modelo OTOR-simples foi a utilização do modelo com duas armadilhas independentes e um centro de recombinação, que resulta em dois decaimentos exponenciais. Para obtenção dos parâmetros que descrevem o sinal CW-OSL com esses modelos, foi utilizado o método dos mínimos quadrados (MMQ), com refinamento dos parâmetros pelo método de Gauss. O modelo de dois decaimentos exponenciais mostrou-se superior em qualidade com análise do parâmetro $\\chi^2$ e do comportamento dos resíduos em relação ao modelo de um decaimento exponencial para ambos os materiais utilizados. Com os ajustes, foi possível verificar diferenças nos comportamentos do sinal CW-OSL das amostras irradiadas em diferentes situações. As diferenças observadas nos comportamentos são apresentadas pelos parâmetros de decaimento ou de sinal inicial, ou pelas relações entre esses. Os parâmetros ajustados mostram que os sinais OSL provenientes do Al$_2$O$_3$:C e do BeO irradiados com alfa, beta e gama apresentam diferenças significativas nos comportamentos. As diferenças verificadas pelos ajustes dos sinais CW-OSL apresentados pelos dosímetros irradiados com beta e gama podem ter sido em parte causadas por efeito de fading, que afeta de maneira distinta os formatos das curvas e parâmetros ajustados. Nas irradiações com radiação gama com faixas de doses (de 22 a 122 mGy) e taxas doses absorvidas (de 0.024 a 1.66 Gy/s) não foram observados diferenças significativas nos sinais OSL. / The dosimetry of alpha, beta and gamma radiation is important in various applied areas, it is used in radiation protection of patients and professionals who are exposed at this kind of radiation. With dosimetric studies, it is possible to better estimate the absorbed dose, and population risks. Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) techniques are used for these dosimetric applications. Recent studies have shown that some known dosimetric materials as carbon doped aluminum oxide (Al$_2$O$_3$:C) and berilium oxide (BeO) undergo changes in OSL signal behavior related to dose rates and types of radiation. The main objective of this work was to analise the formats of these curves and quantitatively verify whether or not there are changes in OSL signal of the dosimeters irradiated with different types of radiation and dose rates. Under the model of one trap one recombination center (OTOR) the continuous wave OSL (CW-OSL) signals were studied. The OTOR model is the simplest model, but has no analytical solution and the computational solutions are costly by the large number of variables and parameters. In this work, it was necessary to make some simplifications in order to obtain a simple model that could be fitted to the data. The simple-OTOR model shows an exponential decay behavior in the CW-OSL signal description. Another extension approach to the simple-OTOR model was the model with two independent traps and one recombination center, that results in two exponential decays. To obtain the parameters that describe the CW-OSL signal with these models, the least square method (LSM) was used, with parameter refinement by Gauss method. For both the materials the two exponential decay model proved to be superior in quality to the one exponential decay by the analysis of the parameter $\\chi^2$ and the behavior of the residuals. With the fittings, it was possible to verify differences in the behavior of the CW-OSL signal of the samples irradiated in different situations. These differences observed are presented in the decay or initial signal parameters, or in their ratios. Fitted parameters show that OSL signals from Al$_2$O$_3$:C and BeO irradiated with alpha, beta and gamma exhibit significant differences in behavior. The differences verified by the fittings of the CW-OSL signals presented by beta and gamma irradiated dosimeters may in part have been caused by fading effect, which affects in a different way the shapes of the curves and fitted parameters. Gamma irradiation with dose and absorbed dose rate ranges from 22 to 122 mGy and from 0.024 to 1.66Gy/s respectively did not produce significant differences in OSL signals.
5

Estudo do comportamento de sinais OSL de BeO e Al2O3:C usando o Modelo OTOR Simplificado e Método dos Mínimos Quadrados / Study of the Behavior of OSL Signals of BeO and Al2O3:C using the Simplified OTOR Model and Least Square Method

Leonardo dos Reis Leano Soares 02 October 2018 (has links)
A dosimetria das radiações alfa, beta e gama é importante para diversas áreas aplicadas, sendo utilizada na proteção radiológica de pacientes e profissionais que se expõem a esses tipos de radiações. Com estudos dosimétricos pode-se obter melhores estimativas de dose absorvida, e ter mais precisão na estimativa de riscos populacionais. As técnicas de Termoluminescência (TL) e Luminescência Oticamente Estimulada (OSL) são utilizadas para essas aplicações dosimétricas. Estudos recentes têm mostrado que alguns materiais dosimétricos conhecidos como óxido de alumínio dopado com carbono (Al$_2$O$_3$:C) e óxido de berílio (BeO) sofrem mudanças no formato observado dos sinais OSL com relação as taxas de dose e tipos de radiação. O principal objetivo desse trabalho foi analisar os formatos dessas curvas e verificar quantitativamente, se existem ou não mudanças nos formatos dos sinais OSL dos dosímetros irradiados com diferentes tipos de radiação e taxas de dose. Sob o modelo de uma armadilha e um centro de recombinação (OTOR) foram estudados os sinais OSL com estímulo contínuo (CW-OSL). O modelo OTOR é simples, mas não possui solução analítica e as soluções computacionais são custosas pelo número grande de variáveis e parâmetros. Nesse trabalho, foi necessário realizar algumas simplificações para obtenção de um modelo ainda mais simples para ajuste nos dados. O modelo OTOR simples apresenta um comportamento de decaimento exponencial na descrição do sinal CW-OSL. Uma outra abordagem de extensão do modelo OTOR-simples foi a utilização do modelo com duas armadilhas independentes e um centro de recombinação, que resulta em dois decaimentos exponenciais. Para obtenção dos parâmetros que descrevem o sinal CW-OSL com esses modelos, foi utilizado o método dos mínimos quadrados (MMQ), com refinamento dos parâmetros pelo método de Gauss. O modelo de dois decaimentos exponenciais mostrou-se superior em qualidade com análise do parâmetro $\\chi^2$ e do comportamento dos resíduos em relação ao modelo de um decaimento exponencial para ambos os materiais utilizados. Com os ajustes, foi possível verificar diferenças nos comportamentos do sinal CW-OSL das amostras irradiadas em diferentes situações. As diferenças observadas nos comportamentos são apresentadas pelos parâmetros de decaimento ou de sinal inicial, ou pelas relações entre esses. Os parâmetros ajustados mostram que os sinais OSL provenientes do Al$_2$O$_3$:C e do BeO irradiados com alfa, beta e gama apresentam diferenças significativas nos comportamentos. As diferenças verificadas pelos ajustes dos sinais CW-OSL apresentados pelos dosímetros irradiados com beta e gama podem ter sido em parte causadas por efeito de fading, que afeta de maneira distinta os formatos das curvas e parâmetros ajustados. Nas irradiações com radiação gama com faixas de doses (de 22 a 122 mGy) e taxas doses absorvidas (de 0.024 a 1.66 Gy/s) não foram observados diferenças significativas nos sinais OSL. / The dosimetry of alpha, beta and gamma radiation is important in various applied areas, it is used in radiation protection of patients and professionals who are exposed at this kind of radiation. With dosimetric studies, it is possible to better estimate the absorbed dose, and population risks. Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) techniques are used for these dosimetric applications. Recent studies have shown that some known dosimetric materials as carbon doped aluminum oxide (Al$_2$O$_3$:C) and berilium oxide (BeO) undergo changes in OSL signal behavior related to dose rates and types of radiation. The main objective of this work was to analise the formats of these curves and quantitatively verify whether or not there are changes in OSL signal of the dosimeters irradiated with different types of radiation and dose rates. Under the model of one trap one recombination center (OTOR) the continuous wave OSL (CW-OSL) signals were studied. The OTOR model is the simplest model, but has no analytical solution and the computational solutions are costly by the large number of variables and parameters. In this work, it was necessary to make some simplifications in order to obtain a simple model that could be fitted to the data. The simple-OTOR model shows an exponential decay behavior in the CW-OSL signal description. Another extension approach to the simple-OTOR model was the model with two independent traps and one recombination center, that results in two exponential decays. To obtain the parameters that describe the CW-OSL signal with these models, the least square method (LSM) was used, with parameter refinement by Gauss method. For both the materials the two exponential decay model proved to be superior in quality to the one exponential decay by the analysis of the parameter $\\chi^2$ and the behavior of the residuals. With the fittings, it was possible to verify differences in the behavior of the CW-OSL signal of the samples irradiated in different situations. These differences observed are presented in the decay or initial signal parameters, or in their ratios. Fitted parameters show that OSL signals from Al$_2$O$_3$:C and BeO irradiated with alpha, beta and gamma exhibit significant differences in behavior. The differences verified by the fittings of the CW-OSL signals presented by beta and gamma irradiated dosimeters may in part have been caused by fading effect, which affects in a different way the shapes of the curves and fitted parameters. Gamma irradiation with dose and absorbed dose rate ranges from 22 to 122 mGy and from 0.024 to 1.66Gy/s respectively did not produce significant differences in OSL signals.
6

Characterization and modeling of phase-change memories / Characterization and modeling of Phase-Change Memories

Betti Beneventi, Giovanni 14 October 2011 (has links)
La thèse de Giovanni BETTI BENEVENTI portes sur la caractérisation électrique et la modélisationphysique de dispositifs de mémoire non-volatile à changement de phase. Cette thèse a été effectuée dans le cadre d’une cotutelle avec l’Università degli Studi di Modena e Reggio Emilia (Italie).Le manuscrit en anglais comporte quatre chapitres précédés d’une introduction et terminés par uneconclusion générale.Le premier chapitre présent un résumé concernant l’état de l’art des mémoires a changement de phase. Le deuxième chapitre est consacré aux résultats de caractérisation matériau et électrique obtenus sur déposition blanket et dispositifs de mémoire à changement de phase (PCM) basées sur le nouveau matériau GeTe dopé carbone (GeTeC).Le chapitre trois s’intéresse à l’implémentation et à la caractérisation expérimentale d’un setup demesure de bruit a basse fréquence sur dispositifs électroniques a deux terminaux développé auxlaboratoires de l’Università degli Studi di Modena e Reggio Emilia en Italie.Enfin, dans le dernier chapitre est présentée une analyse rigoureuse de l’effet d’auto-chauffage Joulesur la caractéristique I-V des mémoires a changement de phase intégrant le matériau dans la phase polycristalline. / Within this Ph.D. thesis work new topics in the field of Non-Volatile Memories technologies have been investigated, with special emphasis on the study of novel materials to be integrated in Phase-Change Memory (PCM) devices, namely:(a) Investigation of new phase-change materialsWe have fabricated PCM devices integrating a novel chalcogenide material: Carbon-doped GeTe (or simply, GeTeC). We have shown that C doping leads to very good data retention performances: PCM cells integrating GeTeC10% can guarantee a 10 years fail temperature of about 127°C, compared to the 85°C of GST. Furthermore, C doping reduces also fail time dispersion. Then our analysis has pointed out the reduction of both RESET current and power for increasing carbon content. In particular, GeTeC10% PCM devices yield about a 30% of RESET current reduction in comparison to GST and GeTe ones, corresponding to about 50% of RESET energy decrease.Then, resistance window and programming time of GeTeC devices are comparable to those of GST.(b) Advanced electrical characterization techniquesWe have implemented, characterized and modeled a measurement setup for low-frequency noise characterization on two-terminal semiconductor devices.(c) Modeling for comprehension of physical phenomenaWe have studied the impact of Self-induced Joule-Heating (SJH) effect on the I-V characteristics of fcc polycrystalline-GST-based PCM cells in the memory readout region. The investigation has been carried out by means of electrical characterization and electro-thermal simulations.

Page generated in 0.5672 seconds