• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • Tagged with
  • 21
  • 21
  • 21
  • 21
  • 21
  • 21
  • 21
  • 12
  • 11
  • 8
  • 7
  • 6
  • 5
  • 5
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flügel

Becker, Winfried 17 November 2023 (has links)
Ansatz meines Entwurfes war die Eigenschaft des Carbonbetons, mit ihm sehr dünne, stabile und korrosionsbeständige Konstruktionen herstellen zu können. Da ich unter anderem an der Leistungsgrenze von Betonkonstruktionen im bildhauerischen Bereich arbeite und Federn und Flügel eine sehr dünne, leistungsfähige und natürliche Einheit bilden, habe ich dies als mein Thema gewählt
2

Die Natur im Inneren: Skulptur aus Carbonbeton

Kleppe, Martin 17 November 2023 (has links)
Der Fokus meiner künstlerischen Arbeit liegt bei großformatigeren Skulpturen vor allem für den Außenbereich. Das Zusammenspiel von Natur und Skulptur spielt hier formal und inhaltlich eine wichtige Rolle. Der Carbonbeton ist für mich ein fast idealer Werkstoff. Meine Arbeitstechnik, den Umgang mit dem Werkstoff Carbonbeton, habe ich für meine künstlerische Arbeit adaptiert und in verschiedene Richtungen entwickelt.
3

Torsionsversuche an carbonbetonverstärkten Plattenbalken mit neuen Carbonbewehrungssystemen: Experimentelle und analytische Betrachtungen

Müller, Egbert 09 December 2021 (has links)
Der Baufortschritt in Deutschland und global betrachtet ist immens. Es werden jedoch nicht nur Neubauwerke errichtet, sondern auch immer mehr Tragstrukturen erhalten. Die Gründe dafür können vielfältig sein. Um jedoch Bauwerke nachträglich zu verstärken, müssen die Tragmechanismen des Verstärkungsmaterials gut erforscht und verstanden sein, bevor es auf dem Markt angewendet werden kann. In dieser Arbeit sind Versuche zur Beschreibung des Torsionstragverhaltens carbonbetonverstärkter Plattenbalken durchgeführt worden. Es wird zunächst in gebotener Kürze der Stand des Wissens zusammengefasst. Anschließend werden das Versuchsprogramm und die Probekörper inklusive der Materialkennwerte vorgestellt. Neben einer ausführlichen Beschreibung der Torsionsmomenten-Verwindungs-Beziehungen, der Dehnungsverteilungen im Zustand I und Zustand II sowie den Rissabständen und Risswinkeln wird eine Möglichkeit gezeigt, das einwirkende Torsionsmoment anhand der gemessenen Materialkennwerte zum Betrachtungszeitpunkt bei erreichter Maximallast zu bestimmen und somit Informationen über die vorhandene Kräfteverteilung der Druck- bzw. Zugstreben zu erhalten. Die durchgeführten Versuche stellen nur einen Bruchteil der notwendigen Untersuchungen dar, um das Tragverhalten von carbonbetonverstärkten Bauteilen auf Torsionsbeanspruchung beispielsweise in einer Richtlinie zu regeln. Sie bieten jedoch einen Anfang. Es wäre interessant zu erfahren, ob bei Plattenbalken mit abweichender Geometrie ein vergleichbares Tragverhalten beobachtet werden kann. Zudem wäre ausführlich die Verankerungsmöglichkeit der Carbonbewehrung im Torsionsfall zu untersuchen, da mit den momentan verfügbaren Bewehrungsmatten bei Plattenbalken teilweise nur bündige Stöße möglich sind. Trotz dieser konstruktiven Mängel ist dennoch eine Tragfähigkeitssteigerung möglich, die nicht nur mit der aufgebrachten Feinbetonschicht zu erklären ist.:Inhaltsverzeichnis ........................................................................................................................... I Symbolverzeichnis ........................................................................................................................ III Abbildungsverzeichnis ................................................................................................................. VII Tabellenverzeichnis ...................................................................................................................... XI 1 Einleitung ................................................................................................................................. 1 1.1 Ausgangslage ................................................................................................................... 1 1.2 Zielsetzung und Aufbau der Arbeit ................................................................................ 3 1.3 Abgrenzung ...................................................................................................................... 3 2 Stand des Wissens................................................................................................................... 5 2.1 Stahl- und Carbonbeton im Überblick ........................................................................... 5 2.1.1 Die Anfänge in Deutschland .................................................................................... 5 2.1.2 Werkstoffverhalten des Betons und der Stahl- und Carbonbewehrung ............ 9 2.1.3 Verbund- und Tragverhalten von Stahl- und Carbonbeton ............................... 13 2.2 Torsion ........................................................................................................................... 17 2.2.1 Durchgeführte Untersuchungen seit 2011 .......................................................... 17 2.2.2 Tragverhalten von torsionsbeanspruchten Stahlbetonbauteilen ..................... 19 2.2.3 Berechnungsmodelle zur Bestimmung der Torsionstragfähigkeit .................... 21 3 Versuchsprogramm .............................................................................................................. 33 3.1 Torsionsbeanspruchte Plattenbalken ......................................................................... 33 3.2 Kleinteilige Standardtests ............................................................................................. 34 4 Probekörper........................................................................................................................... 37 4.1 Eigenschaften und Abmessungen ............................................................................... 37 4.1.1 Plattenbalken für Torsionsversuche .................................................................... 37 4.1.2 Kritik am Versuchskörper ...................................................................................... 39 4.2 Materialien ..................................................................................................................... 40 4.2.1 Beton- und Stahlkennwerte – Plattenbalken ....................................................... 40 4.2.2 Carbonbewehrung ................................................................................................. 40 4.3 Herstellung .................................................................................................................... 41 4.3.1 Plattenbalken für Torsionsversuche .................................................................... 41 4.3.2 Bauteilverstärkung ................................................................................................. 42 4.4 Routine- und Begleitprobekörper ................................................................................ 42 5 Experimentelle Untersuchungen ......................................................................................... 45 5.1 Variante I des Torsionsversuchsstandes ..................................................................... 45 5.2 Variante II des Torsionsversuchsstandes .................................................................... 47 5.3 Versuchsdurchführung ................................................................................................. 49 5.4 Messtechnik ................................................................................................................... 50 6 Versuchsergebnisse .............................................................................................................. 55 6.1 Routine- und Begleitprobekörper ............................................................................... 55 6.2 Ergebnisse der auf Torsion verstärkten Plattenbalken ............................................. 57 6.2.1 Einleitung einer Vorschädigung in die Plattenbalken ......................................... 57 6.2.2 Ergebnisse der Plattenbalkenversuche – Torsions-Verwindung-Verhalten ...... 59 6.2.3 Ergebnisse der Plattenbalkenversuche – Dehnungen ε ..................................... 70 6.2.4 Ergebnisse der Plattenbalkenversuche – Rissabstände und -winkel ................ 77 6.2.5 Ergebnisse der Plattenbalkenversuche – Torsionssteifigkeit-Verhalten ........... 83 6.3 Gegenüberstellung der Versuchsergebnisse nach Versagensfall ............................. 84 7 Nachrechnung der Plattenbalkenversuche ........................................................................ 87 7.1 Überprüfung der Ansätze von Schladitz ..................................................................... 87 7.1.1 Berechnung des Erstrissmomentes der Probekörper ........................................ 87 7.1.2 Berechnung des Zustands II der unverstärkten Probekörper nach EC 2 [34] .. 89 7.1.3 Berechnung der Tragfähigkeit der verstärkten Probekörper im Zustand II nach Schladitz [95] ......................................................................................................................... 91 7.1.4 Verwindungen im Zustand I und Zustand II ........................................................ 94 7.2 Erweiterung der Ansätze von Schladitz [95] ............................................................... 97 7.2.1 Nachrechnung des Erstrissmoments eines carbonbetonverstärkten Plattenbalkens ....................................................................................................................... 97 7.2.2 Modifizierten Ansatz im Zustand II .................................................................... 100 7.2.3 Parameterstudie mit der SITgrid 040 Carbonbewehrung nach Ansatz (3) ..... 104 7.2.4 Parameterstudie mit der solidian-Carbonbewehrung nach Ansatz (3) .......... 108 7.2.5 Vergleich und Interpretation der aufgestellten Berechnungen....................... 111 8 Zusammenfassung und Ausblick ....................................................................................... 115 9 Literaturverzeichnis ............................................................................................................ 119 Anhang A – Materialkennwerte ................................................................................................ 127 Anhang B – Bruchbilder der Plattenbalken ............................................................................. 167 Anhang C – Messwerte der experimentellen Untersuchungen ............................................. 183 Anhang D – Vergleich der Berechnungen Ansatz 1 und Ansatz 2 ......................................... 253
4

Experimentelle Untersuchungen des Verbundverhaltens von Carbonstäben in Betonmatrices

Schumann, Alexander 12 January 2021 (has links)
Das Bauwesen befindet sich in einem ständigen Fortschritt. So war und ist der Stahlbeton der meistverwendetste Baustoff auf der Welt. Jedoch haben sich infolge des stetigen Wandels und Fortschritts der Wissenschaft mittlerweile auch andere Verbundwerkstoffe hervorgetan, die den größten Nachteil, die fehlende Korrosionsbeständigkeit des Stahls, nicht mehr beinhalten. Mit Hilfe von nichtmetallischen Faserverbundwerkstoffen als Bewehrungselemente im Beton ergeben sich folglich dauerhaftere Konstruktionsmöglichkeiten. Jedoch muss das Tragverhalten der neuen Bewehrungselemente aus z. B. Glas- oder Carbonfasern weitreichend untersucht sein, bevor diese effizient und zuverlässig in Bauwerken eingesetzt werden können. Zur Beschreibung des Tragverhaltens der FVK-bewehrten Bauteile ist die Kenntnis über das Verbundverhalten zwischen FVK-Bewehrung und Beton essentiell, um eine Verwendung in der Baubranche finden zu können. Aus diesem Grund wurde im Rahmen dieser Arbeit das Verbundverhalten zwischen verschiedenen Carbonstäben und einem ausgewählten hochfesten Beton weitreichend untersucht, um neue Kenntnisse über die in Deutschland und auch international noch relativ unerforschte Thematik erzielen zu können. Aufbauend auf der Beschreibung des Standes des Wissens zum Verbunverhalten von Stahlbeton, zu FVK-Bauteilen im Allgemeinen und zum Verbundverhalten von FVK-bewehrten Bauteilen, wurden eine Vielzahl an experimentellen Verbundversuchen durchgeführt. Zu Beginn wurden in einer ersten Versuchsserie verschiedene Carbonstäbe mit unterschiedlichen Oberflächenprofilierungen und Herstellungsmethoden im Verbundversuch miteinander verglichen. Im Zuge dessen konnte festgestellt werden, dass die Höhe der übertragbaren Verbundspannungen in starkem Maße von dem Herstellungsverfahren bzw. der Oberflächenprofilierung der Stabvarianten abhängen. Mit Hilfe der Voruntersuchungen konnte die Stabvariante 7 (Carbonstab mit einer Oberflächenprofilierung infolge Fräsung) als Vorzugsvariante für weitergehende Betrachtungen ausgewählt werden. In den anschließenden Kapiteln wurde der zuvor als Referenzstab definierte Carbonstab experimentell umfangreich untersucht sowie erste analytische Modelle vorgeschlagen, um den Einfluss von wesentlichen Parametern auf das Verbundverhalten charakterisieren zu können. Folgende Einflussparameter wurden experimentell erforscht: Betonfestigkeit, Verbundlänge, Carbonstabchargen, Größtkorn/Betonzusammensetzung, Betonierrichtung, Prüfgeschwindigkeit. Zusätzlich erfolgte noch der Vergleich des Verbundverhaltens zwischen dem Carbonstab und einem konventionellem Betonstahl. Die Untersuchungen der verschiedenen Einflussfaktoren zeigten, dass viele Erkenntnisse aus dem Stahlbetonbau auch für den Carbonstab übernommen werden können. Jedoch konnte mit Hilfe der experimentellen Versuche auch gezeigt werden, dass weitere Phänomene auftreten können, die aus dem konventionellen Betonbau nicht bekannt sind. Zusätzlich zu den Auszugversuchen wurde die Spaltneigung des Carbonstabes mit Hilfe von verschiedenen Dehnkörper- und Endverankerungsversuchen in Zusammenhang mit dem hochfesten Beton erforscht. Im Zuge dessen konnte festgestellt werden, dass der Referenzcarbonstab aufgrund des guten Verbundverhaltens zwischen Carbonstab und dem hochfesten Beton bei Probekörpern mit realen Betondeckungen eine zum Teil hohe Spaltneigung aufweist. Durch die Verwendung von verschiedenen Probekörpern mit unterschiedlichen Betondeckungen konnte gezeigt werden, dass der Bewehrungsgrad einen maßgeblichen Einfluss auf die Spaltneigung besitzt. Zum Abschluss der Arbeit wurden ein analytisches Verbundgesetz für den Carbonstab sowie verschiedene Ansätze für die Herleitung eines Bemessungsverbundwertes aufgezeigt. Für die Beschreibung eines Verbundgesetzes wurden die bekannten Ansatzfunktionen aus der Literatur an die experimentellen Ergebnisse angepasst und miteinander verglichen. Dabei stellte sich heraus, dass das aus dem Stahlbeton bekannte Verbundgesetz mit einer geringfügigen Modifikation für den Referenzstab geeignet ist. Somit steht zukünftigen Forschungstätigkeiten ein Verbundgesetz zur Verfügung, welches den gesamten Verlauf der Verbundspannungs-Schlupf-Kurve abbildet. Für die Definition eines möglichen Verbundwertes erfolgte zuerst eine Aufarbeitung der verschiedenen Ansatzfunktion aus dem Stahlbeton sowie weiterer Ansätze aus dem Stand der Technik für FVK-Bauteile. Dabei wurden die jeweiligen Möglichkeiten zur Herleitung eines Verbundwertes für die Berechnung von Carbonbetonbauteilen auf den Referenzcarbonstab übertragen. Im Zuge dessen konnte gezeigt werden, dass zwischen den verschiedenen Ansatzfunktion teils gravierende Abweichungen bestehen, die zu unterschiedlichsten Verbundwerten führen. Ebenfalls konnte nachgewiesen werden, dass einige Ansatzfunktionen die realen Bauteilbedingungen nicht berücksichtigen, wodurch sich unrealistische Verbundwerte ergeben können. Insbesondere die Beachtung der höheren Spaltneigung des Carbonstabes erfolgt in der Regel in den verschiedenen Ansätzen nicht. Jedoch muss die höhere Spaltneigung des Carbonstabes im Beton im Vergleich zu konventionellen Stahlstäben Berücksichtigung finden, um abgesicherte und auf der sicheren Seite liegende Verbundwerte definieren zu können. Aufgrund mit Hilfe von Dehnkörperversuchen aufgezeigten Abhängigkeit zwischen dem Schlupf und der Spaltneigung des Stabes im Beton, kommt der Definition des zulässigen Schlupf- und folglich des Verbundwertes eine im Vergleich zum Stahlbeton noch größere Bedeutung zu.
5

Experimentelle Untersuchungen und Modellvergleiche von leichten Tragstrukturen aus Carbonbeton und betongetränkten Vliesstoffen

Senckpiel-Peters, Tilo 08 July 2021 (has links)
Der innovative Verbundwerkstoff N-TRC (Nonwoven-Textile Reinforced Concrete) bestehend aus Carbonbeton (CRC – Carbon Reinforced Concrete) und betongetränktem Nadelvliesstoff (CSN – Concrete Soaked Nonwovens) ist in Form von Material- und Bauteilversuchen entwickelt und getestet worden. Nach der Ermittlung des eindimensionalen Druck- und Zugtragverhaltens des Materials sind verschiedene Konstruktionsvarianten eines Deckenträgers in 6-Punkt-Biegeversuchen untersucht worden. Die Bauweise mit N-TRC ermöglicht dabei die Herstellung dünner Querschnitte mit einer hohen Maßgenauigkeit und Anpassungsfähigkeit an räumliche Flächentragwerke. Des Weiteren weist der betongetränkte Nadelvliesstoff eine sehr feine Rissbildung und außergewöhnlich hohe Duktilität auf. Die untersuchten Bauteilabmessungen der Deckenträger reichen in der Spannweite von 3 bis 4,3 m und betragen in der Höhe 0,2 m und in der Breite 0,6 m. Die Bauelemente erreichen bei diesen Abmessungen Eigengewichte von 50 – 100 kg und übertreffen mit der experimentell ermittelten, maximalen Tragfähigkeit dabei die nominellen Gebrauchslasten um ein Vielfaches. Wie bei allen filigranen und leichten, aber sehr tragfähigen Tragstrukturen gehen diese Tragfähigkeiten mit hohen Verformungen einher, denen konstruktiv begegnet werden muss. Neben den experimentell durchgeführten Material- und Großbauteilversuchen sind analytische und mitunter relativ aufwändige numerische Simulationsmodelle entwickelt, auf die Bauteilversuche angewendet und untereinander verglichen worden. Dabei werden unter anderem mehrschichtige Carbonbewehrungen und das mehraxiale nichtlineare Spannungs-Dehnungsverhalten von Beton berücksichtigt, um das realitätsnahe Tragverhalten der Bauteile vom ungerissenen Zustand bis zum Zustand der abgeschlossenen Rissbildung abzubilden.
6

Verstärkung von Stahl- und Spannbetonbrücken mit Carbonbeton

Steinbock, Oliver 20 April 2022 (has links)
Um die Anwendbarkeit von Carbonbeton als Verstärkungsmaßnahme bewerten zu können, wurden zunächst Aspekte zur Materialbeschaffenheit auf Grundlage laufender Forschungsvorhaben zusammengetragen und vor dem Hintergrund der Anwendung im Brückenbau gezielt durch eigene Versuchsserien ergänzt. Der Schwerpunkt der Arbeit lag jedoch bei der Untersuchung des Tragverhaltens von verstärkten Stahl- und Spannbetontragwerken. Während die Verbundunterschiede zwischen Bewehrungsmaterial im Altbetonbauteil und der nachträglich angebrachten Verstärkungsschicht im Bruchzustand von untergeordneter Bedeutung sind, bestimmen diese im Gebrauchszustand das Tragverhalten maßgeblich. Basierend auf Bauteilversuchen an carbonbetonverstärkten Stahl- und Spannbetonplattenstreifen gelang es sowohl einen Bemessungsansatz unter Gebrauchslastniveau als auch für den Grenzzustand der Tragfähigkeit abzuleiten. Auch die weit verbreitete Problematik in Deutschland zur Verstärkung von Tragwerken mit spannungsrisskorrosionsgefährdetem Spannstahl wurde behandelt. An Brückenträgern aus einem Brückenrückbau ergab sich die Möglichkeit experimentelle Untersuchungen durchzuführen und die Wirksamkeit einer Carbonbetonverstärkung zu validieren. Die Träger wurden zunächst gezielt geschädigt, anschließend mit Carbonbeton verstärkt und das Tragverhalten in Hinblick auf die Kriterien Rissbildung unter Gebrauchslasten (Ankündigungsverhalten) sowie die erzielbare Restsicherheit (Tragsicherheit) bewertet. Die Ergebnisse und Berechnungsansätze wurden für die praktische Anwendung in einem Bemessungsbeispiel zusammengetragen. Mit der vorliegenden Arbeit wurden somit die Grundlagen geschaffen Verstärkungsmaßnahmen mit Carbonbeton im Brückenbau bemessen zu können.
7

Carbonbeton unter Hochtemperaturbeanspruchung

Holz, Karoline 14 February 2022 (has links)
Thematisch befasse ich mich in meiner Dissertation mit der experimentellen Untersuchung von Carbonbeton unter Hochtemperaturbeanspruchung. Um die Thematik grundlegend aufzuarbeiten, wurden zuerst die Prüfmöglichkeiten zur Bestimmung der Zug- und Verbundtragfähigkeit von Carbonbeton unter Raumtemperatur zusammengetragen. Aufbauend dazu wurden die bisherigen Erkenntnisse zu Hochtemperaturuntersuchungen an carbonfaserverstärkten Kunststoffen zusammengefasst und aufbereitet. Die eigenen experimentellen Versuche bauen auf den Vorbetrachtungen auf. Der Fokus lag auf der Untersuchung des Zugtragverhaltens von zwei ausgewählten Carbonbeton-Materialkombinationen am Dehnkörper. Zur Ermittlung der Zugfestigkeit wurden stationäre und instationäre Zugversuche in einem Temperaturbereich zwischen 100 °C und 600 °C durchgeführt. Bei den instationären Zugversuchen lag das Lastniveaus zwischen 50 % und 80 % der Zugfestigkeit bei Raumtemperatur. Daraus wurden dann Zugbemessungswerte für die Dimensionierung von Carbonbetonbauteilen im Brandfall abgeleitet. Neben den Zugversuchen wurden auch stationäre Verbundversuche an den zwei Materialkombinationen in einem Temperaturbereich zwischen 100 °C und 400 °C durchgeführt. Hierbei lag der Fokus vor allem auf der Vorhersage der Versuchsergebnisse auf Basis von chemischen Betrachtungen des Bewehrungsmaterials.
8

Zum Tragverhalten von Carbonbeton unter Ermüdungsbeanspruchung

Wagner, Juliane 14 January 2022 (has links)
Die Anzahl an Brücken aus Textil- bzw. Carbonbeton wächst stetig und umso dringender wird die Fragestellung nach einer sicheren Ermüdungsbemessung von Carbonbeton. Die bloße Einführung von Abminderungsfaktoren als Widerstand gegen die Ermüdungsbelastung ist hierbei keine Option. Für eine wirtschaftliche Bemessung von Carbonbeton unter Zugschwellbelastung ist ein materialgerechtes Bemessungskonzept vonnöten, welches zunächst eine umfangreiche Untersuchung des Materialverhaltens unter Ermüdungsbelastung erfordert. Hierzu leistet die vorliegende Arbeit einen essentiellen Beitrag. Zunächst wird dabei der für die durchgeführten Untersuchungen relevante Wissensstand zusammengefasst. Anschließend werden umfangreiche Ermüdungsuntersuchungen vorgestellt, welche an zwei verschiedenen, marktüblichen Materialkombinationen durchgeführt wurden. Dabei wurden sowohl das Zug- als auch das Verbundtragverhalten von Carbonbeton unter Zugschwellbelastung betrachtet. Neben den erreichbaren Schwingspielzahlen und Resttragfähigkeiten von Durchläufern wurden auch das Spannungs-Dehnungs- bzw. -Verformungs-Verhalten, die Veränderung der Gestalt der Hystereseschleifen, die Probekörperdehnungen bzw. -verformungen und die Probekörpersteifigkeiten während der Ermüdungsbelastung untersucht. Anhand der erzielten Untersuchungsergebnisse wird schlussendlich ein Vorschlag für ein Bemessungskonzept für Carbonbeton unter Zugschwellbeanspruchung zusammengestellt. Die in der vorliegenden Arbeit erzielten Ergebnisse tragen somit dazu bei, ein grundlegendes Verständnis für das Materialverhalten von Carbonbeton bei Ermüdungsbelastung zu erhalten und die Ermüdungsbemessung für die untersuchten Materialien durchzuführen. Die Übertragbarkeit der Ergebnisse auf weitere Materialkombinationen ist in weiterführenden Untersuchungen zu überprüfen.
9

Verbundverhalten von mineralisch und polymer gebundenen Carbonbewehrungen und Beton bei Raumtemperatur und erhöhten Temperaturen bis 500 °C

Wilhelm, Kai 22 December 2021 (has links)
Textilbeton bzw. Carbonbeton ist ein mit textilen Strukturen bewehrter Verbundbaustoff. Tausende einzelne Filamente bilden Multifilamentgarne welche zu textilen Strukturen verarbeitet werden. Die einzelnen Filamente werden kraftschlüssig mit polymeren oder mineralischen Tränkungsmatrices zu homogenen Bewehrungsstrukturen verbunden. Eingebettet sind diese Textil- bzw. Carbonbewehrungen in anforderungsgerechten Betonmatrices. Die Eigenschaften der am Verbund beteiligten Ausgangsbaustoffe beeinflussen das Leistungsvermögen des Verbundbaustoffes und des Verbundes zwischen Bewehrung und Betonmatrix entscheidend. Das Verbundverhalten wird vereinfacht in zwei Bereiche unterteilt. In den Haftverbund, welcher bereits bei kleinsten Verformungen zerstört wird. Beim Überschreiten des Haftverbundes wird von einem beginnenden Schlupf zwischen Bewehrung und umhüllender Betonmatrix ausgegangen. Und den Reibverbund, welcher über große Verschiebungen hinweg aufrechterhalten werden kann. Der Reibverbund ist von durch Schlupf erzeugter Reibung zwischen Bewehrung und umhüllender Betonmatrix geprägt. In der vorliegenden Arbeit wurden unterschiedlichste Bewehrungsstrukturen auf ihr charakteristisches Verbundverhalten in einem Prüfalter von 28 Tagen bei Raumtemperatur und erhöhten Temperaturen bis 500 °C hin untersucht. Das Verbundverhalten wies je nach verwendeter Materialkombination und Geometrie der Bewehrungsstruktur sehr andersartige Verbundcharakteristika auf. Dies bezieht sich sowohl auf den Haftverbund (Anstieg der Verbundkurve) als auch auf den Reibverbund (Höhe und Neigung des Reibplateaus). Die Leistungsverluste im Verbund unter Temperatureinwirkung fielen ebenfalls sehr unterschiedlich aus. Wesentliche Ursache der Abnahme der übertragbaren Verbundkräfte ist bei polymeren Tränkungssystemen auf die Überschreitung der Glasübergangstemperatur und bei mineralisch getränkten Garnstrukturen auf Schwindverformungen infolge Dehydrierung zurückzuführen. Aus der Vielzahl der durchgeführten Verbunduntersuchungen mit sehr unterschiedlichen Bewehrungstypen, konnte ein Ansatz zur einheitlichen bzw. vergleichenden Beschreibung des sogenannten Haftverbundes erstellt werden. Hierbei liegt der Schwerpunkt auf dem Schlupfbeginn zwischen Bewehrung und Betonmatrix. Die experimentelle Ermittlung des Schlupfbeginnes erfolgte durch die Messung des Bewehrungseinzuges, bei gestaffelten Verankerungslängen von 10 mm bis 40 mm. Als charakteristische Kenngrößen des Verbundmodells wurde der Schlupffortschrittsfluss, welcher den Schlupffortschritt in Abhängigkeit der auftretenden Verbundkräfte darstellt, als wesentlich betrachtet. Der Nachweis des Schlupffortschrittes zwischen Bewehrungselement und umhüllender Betonmatrix erfolgte mithilfe eines Bemessungsansatzes zur Rissbreiten-bemessung im Grenzzustand der Gebrauchstauglichkeit. Mit Hilfe dieses Bemessungs-ansatzes kann eine Bemessung im Grenzzustand der Gebrauchstauglichkeit für die Rissbreitenbemessung im auf Zug beanspruchten Bauteil und für die Schlupffreiheit am Ende der Endverankerung angewendet werden.:1 Einleitung 1 1.1 Problemstellung 1 1.2 Ziel der Arbeit 3 1.3 Aufbau der Arbeit 4 2 Stand des Wissens 5 2.1 Komponenten des Verbundbaustoffes Carbonbeton – Carbonfaser 5 2.1.1 Zusammensetzung und Struktur 5 2.1.2 Mechanische Eigenschaften und Temperaturverhalten 6 2.1.3 Schlichte auf Filamentoberfläche 8 2.2 Komponenten des Verbundbaustoffes Carbonbeton – Tränkungsmatrix 9 2.2.1 Funktion und Anforderungen 9 2.2.2 Polymerbasierte Tränkungsmatrices 10 2.2.2.1 Zusammensetzung und Struktur 10 2.2.2.2 Mechanische Eigenschaften und Temperaturverhalten 11 2.2.3 Mineralische Tränkungsmatrices 13 2.2.3.1 Zusammensetzung und Struktur 13 2.2.3.2 Mechanische Eigenschaften und Temperaturverhalten 16 2.2.4 Technologie der Carbonfasertränkung 16 2.3 Komponenten des Verbundbaustoffes Carbonbeton – Feinbetonmatrix 19 2.3.1 Zusammensetzung und Struktur 19 2.3.2 Mechanische Eigenschaften und Temperaturverhalten 22 2.4 Beschreibung des Verbundverhaltens 24 2.4.1 Verbundspannungen in vielen Ebenen 24 2.4.2 Idealisierung des Bewehrungselements 24 2.4.3 Einflussfaktoren auf das Verbundverhalten 26 2.4.4 Verbundspannungs-Schlupf-Beziehung (VSB) 27 2.4.4.1 Idealisierung der VSB 27 2.4.4.2 VSB – Stahlbeton 28 2.4.4.3 VSB – Spannbeton 30 2.4.4.4 VSB nach Krüger 31 2.4.4.5 VSB nach Banholzer 32 2.4.4.6 VSB nach Richter 33 2.4.4.7 VSB nach Lepenies 34 2.4.4.8 VSB nach Lorenz 34 2.4.5 Zusammenfassung zum Thema Verbundspannungs-Schlupf-Beziehung 36 2.4.6 Endverankerung 38 2.5 Dehnkörpertragverhalten 40 2.5.1 Idealisierung Dehnkörpertragverhalten 40 2.5.2 Rissentwicklung 41 2.5.3 Anforderungen an Risse 42 2.6 Zusammenfassung Stand des Wissens 43 3 Materialien 45 3.1 Materialkonzept 45 3.2 Referenzbewehrungen 45 3.2.1 Carbonbewehrung mit Styrol-Butadien-Tränkung (SBR) 45 3.2.2 Carbonbewehrung mit Epoxidharz-Tränkung (EP) 46 3.2.3 Carbonbewehrung mit Acrylat-Tränkung (ACR) 46 3.2.4 Edelstahldraht (Stahl) 47 3.3 Mineralisch gebundene Bewehrungselemente (MIN) 48 3.3.1 Ausgangsmaterialien 48 3.3.2 Zusammensetzung und Herstellung der Tränkungssuspension 49 3.3.3 Mineralisch gebundene Carbonfaserbewehrung der ersten Generation 50 3.3.4 Mineralisch gebundene Carbonfaserbewehrung der zweiten Generation 52 3.3.5 Vorkonditionierung 53 3.4 Feinbetonmatrix 54 3.4.1 Ausgangsmaterialien und Zusammensetzung 54 3.4.2 Herstellung und Eigenschaften des frischen Feinbetons 55 3.4.3 Festbetoneigenschaften 56 4 Experimentelle Methoden 59 4.1 Einseitiger Auszugsversuch 59 4.1.1 Allgemeines 59 4.1.2 Probekörpergeometrie 60 4.1.3 Herstellung, Nachbehandlung, Vorkonditionierung 60 4.1.4 Prüfung bei Temperaturen bis 200 °C (Verfahren I) 61 4.1.5 Prüfung bei Temperaturen über 200 °C (Verfahren II) 63 4.1.6 Aufbereitung, Darstellung und Auswertung der Messergebnisse 64 4.1.6.1 Numerische Vereinfachung der gemessenen Verschiebungs-Auszugskraftbeziehungen 64 4.1.6.2 Darstellung und Normierung der Werte der Auszugskraft 65 4.1.6.3 Darstellung und Auswertung der Einzugsweg-Kraftkurven 66 4.1.6.4 Ermittlung der Verbundsteifigkeit 68 4.1.6.5 Ermittlung der Auszugsarbeit 68 4.1.7 Kritische Bewertung der Versuchsanordnungen 69 4.1.7.1 Probekörpergeometrie und Spannungszustände 69 4.1.7.2 Messtechnik 70 4.1.7.3 Prüfungen bei hohen Temperaturen 70 4.2 Dehnkörperversuch 72 4.2.1 Allgemeines 72 4.2.2 Probekörpergeometrie 72 4.2.3 Herstellung und Nachbehandlung 73 4.2.4 Prüfung und Messmethoden 74 4.2.5 Auswertung der Messergebnisse 75 4.2.5.1 Kraft-Dehnungs-Verhalten und Faserspannung-Dehnungs-Verhalten 75 4.2.5.2 Rissentwicklung 75 4.2.6 Kritische Bewertung der Versuchsanordnung 77 4.2.6.1 Probekörpergeometrie und Materialauswahl 77 4.2.6.2 Messtechnik 77 4.3 Gefügeanalytische Verfahren 78 4.3.1 Mikroskopische Untersuchungen 78 4.3.1.1 Rasterelektronenmikroskopie -REM 78 4.3.1.2 Digitalmikroskopie 79 4.3.2 Thermoanalytische Messverfahren 79 4.3.3 Quecksilberporosimetrie 80 5 Untersuchungsprogramm 81 5.1 Betrachtete Materialien 81 5.2 Festlegung der Prüftemperaturen 81 5.3 Einseitiger Auszugsversuch 82 5.3.1 Prüfung bei Raumtemperatur 82 5.3.2 Prüfung bei erhöhten Temperaturen 82 5.4 Dehnkörperversuch 85 5.5 Begleitende analytische Untersuchungen 86 6 Experimentelle Ergebnisse 87 6.1 Einseitiger Auszugsversuch bei 20 °C 87 6.1.1 Referenzbewehrungen 87 6.1.2 Mineralisch gebundene Bewehrung der ersten Generation 88 6.1.3 Mineralisch gebundene Bewehrung der zweiten Generation 90 6.1.4 Schubspannung-Auszugsweg-Beziehungen 92 6.1.5 Auszugsweg vs. Einzugsweg 93 6.1.5.1 Referenzbewehrungen 93 6.1.5.2 Mineralisch gebundene Bewehrung der ersten Generation 94 6.1.5.3 Mineralisch gebundene Bewehrung der zweiten Generation 95 6.2 Einseitiger Auszugsversuch bei erhöhten Temperaturen 97 6.2.1 Referenzbewehrungen 97 6.2.2 Mineralisch gebundene Bewehrung der ersten Generation 98 6.2.3 Mineralisch gebundene Bewehrung der zweiten Generation 99 6.2.4 Vorkonditionierte mineralisch gebundene Bewehrungen 100 6.3 Dehnkörperversuch 102 6.3.1 Kraft-Dehnungs-Verhalten und Faserspannung-Dehnungs-Verhalten 102 6.3.2 Rissbreiten und Rissabstände 104 6.3.2.1 Referenzbewehrungen 104 6.3.2.2 Mineralisch gebundene Bewehrung der ersten Generation 106 6.3.2.3 Mineralisch gebundene Bewehrung der zweiten Generation 107 6.3.2.4 Zusammenfassung 108 6.4 Gefügeanalytische Untersuchungen 110 6.4.1 Thermoanalytische Untersuchungen 110 6.4.2 Ergebnisse der Quecksilber-Porosimetrie 111 7 Bewertung der Ergebnisse 113 7.1 Verbundverhalten 113 7.1.1 Unterteilung der Verbundkurve 113 7.1.2 Kennwerte der Verbundkurve 114 7.1.2.1 Reine Kraftwerte 114 7.1.2.2 Verbundmodul 115 7.1.2.3 Auszugsarbeit 115 7.1.3 Einflussfaktoren und Phänomene 116 7.1.3.1 Raumtemperatur 116 7.1.3.2 Erhöhte Temperatur 119 7.2 Bemessungs-Modell im Grenzzustand der Gebrauchstauglichkeit (GZG) 122 7.2.1 Dehnkörper 122 7.2.1.1 Trag- und Verformungsverhalten 122 7.2.1.2 Rissentwicklung/Lasteinleitungslänge 123 7.2.1.3 Rissbreitenbemessung 129 7.2.2 Endverankerungslänge 130 7.2.2.1 Tragverhalten und Rissentwicklung 130 7.2.2.2 Bemessung der Einbindelänge und Rissbreiten 133 8 Baupraktische Dimension der Erkenntnisse 136 8.1 Ausgangsmaterialien 136 8.1.1 Carbonfaser-Bewehrung 136 8.1.2 Feinbetonmatrix 136 8.1.3 Verbundbaustoff 137 8.2 Potentielle Anwendungsfelder 139 8.3 Bauen neu denken! 141 9 Zusammenfassung und Ausblick 142 9.1 Zusammenfassung 142 9.1.1 Verbundverhalten 142 9.1.2 Bemessungs-Modell für den Grenzzustand der Gebrauchstauglichkeit 142 9.2 Ausblick 144 10 Literaturverzeichnis 146 Anhang A: Abkürzungen, Formelzeichen/Symbole, Einheiten 154 Anhang B: Messkurven Auszugsversuche bei Raumtemperatur 158 Anhang C: Messkurven bei erhöhten Temperaturen 167 Anhang D: Messkurven Dehnkörperversuche 179 / Textile reinforced concrete or carbon reinforced concrete is a composite building material reinforced with textile structures. Thousands of single filaments form multifilament yarns which are processed to textile structures. The textile filaments are bonded with polymeric or mineral impregnation materials to form homogeneous reinforcement structures. These textile or carbon reinforcements are embedded in concrete matrices that fulfil the specific requirements. The mechanical properties of the base materials involved in the compound have a decisive influence on the performance of the composite material and the bond between the reinforcement and the concrete matrix. In simplified terms, the bond behavior is divided into two areas. The adhesive bond, which is destroyed by even the smallest deformations. When the bond is exceeded, it is assumed that the slip between the reinforcement and the surrounding concrete matrix begins. And the frictional bond, which can be maintained over large displacements. The frictional bond is characterized by slip-generated friction between the reinforcement and the encasing concrete matrix. In the present study, a wide variation of reinforcement structures was investigated for their characteristic bond behavior at a test age of 28 days at room temperature and elevated temperatures up to 500 °C. The bond behavior of the different reinforcement structures was found to be very different depending on the type of reinforcement used. The bond behavior exhibited very different bond characteristics depending on the material combination used and the geometry of the reinforcement structure. This refers to both, the adhesive bond and the frictional bond. The performance losses in the bond under the influence of temperature also varied greatly. The main cause of the decrease in composite performance was due to the glass transition temperature being exceeded in the case of polymer impregnation systems and to shrinkage deformation as a result of dehydration in the case of mineral-impregnated yarn structures. From the large number of bond investigations carried out with very different types of reinforcement, it was possible to develop an approach for a uniform or comparative description of the bond. The focus here is on the beginning of slip between the reinforcement and the concrete matrix. The experimental determination of the slip beginning was carried out by measuring the reinforcement pull-in, with stepped anchorage lengths from 10 mm to 40 mm. The slip progress flow, which represents the slip progress as a function of the applied bond forces, was considered essential as a characteristic parameter of the bond model. The slip propagation between the reinforcement element and the surrounding concrete matrix was verified using a design approach for crack width design in the serviceability limit state. With the help of this design approach, a serviceability limit state design can be applied for the crack width design in the tensile stressed component and for the no-slip design at the end of the final anchorage.:1 Einleitung 1 1.1 Problemstellung 1 1.2 Ziel der Arbeit 3 1.3 Aufbau der Arbeit 4 2 Stand des Wissens 5 2.1 Komponenten des Verbundbaustoffes Carbonbeton – Carbonfaser 5 2.1.1 Zusammensetzung und Struktur 5 2.1.2 Mechanische Eigenschaften und Temperaturverhalten 6 2.1.3 Schlichte auf Filamentoberfläche 8 2.2 Komponenten des Verbundbaustoffes Carbonbeton – Tränkungsmatrix 9 2.2.1 Funktion und Anforderungen 9 2.2.2 Polymerbasierte Tränkungsmatrices 10 2.2.2.1 Zusammensetzung und Struktur 10 2.2.2.2 Mechanische Eigenschaften und Temperaturverhalten 11 2.2.3 Mineralische Tränkungsmatrices 13 2.2.3.1 Zusammensetzung und Struktur 13 2.2.3.2 Mechanische Eigenschaften und Temperaturverhalten 16 2.2.4 Technologie der Carbonfasertränkung 16 2.3 Komponenten des Verbundbaustoffes Carbonbeton – Feinbetonmatrix 19 2.3.1 Zusammensetzung und Struktur 19 2.3.2 Mechanische Eigenschaften und Temperaturverhalten 22 2.4 Beschreibung des Verbundverhaltens 24 2.4.1 Verbundspannungen in vielen Ebenen 24 2.4.2 Idealisierung des Bewehrungselements 24 2.4.3 Einflussfaktoren auf das Verbundverhalten 26 2.4.4 Verbundspannungs-Schlupf-Beziehung (VSB) 27 2.4.4.1 Idealisierung der VSB 27 2.4.4.2 VSB – Stahlbeton 28 2.4.4.3 VSB – Spannbeton 30 2.4.4.4 VSB nach Krüger 31 2.4.4.5 VSB nach Banholzer 32 2.4.4.6 VSB nach Richter 33 2.4.4.7 VSB nach Lepenies 34 2.4.4.8 VSB nach Lorenz 34 2.4.5 Zusammenfassung zum Thema Verbundspannungs-Schlupf-Beziehung 36 2.4.6 Endverankerung 38 2.5 Dehnkörpertragverhalten 40 2.5.1 Idealisierung Dehnkörpertragverhalten 40 2.5.2 Rissentwicklung 41 2.5.3 Anforderungen an Risse 42 2.6 Zusammenfassung Stand des Wissens 43 3 Materialien 45 3.1 Materialkonzept 45 3.2 Referenzbewehrungen 45 3.2.1 Carbonbewehrung mit Styrol-Butadien-Tränkung (SBR) 45 3.2.2 Carbonbewehrung mit Epoxidharz-Tränkung (EP) 46 3.2.3 Carbonbewehrung mit Acrylat-Tränkung (ACR) 46 3.2.4 Edelstahldraht (Stahl) 47 3.3 Mineralisch gebundene Bewehrungselemente (MIN) 48 3.3.1 Ausgangsmaterialien 48 3.3.2 Zusammensetzung und Herstellung der Tränkungssuspension 49 3.3.3 Mineralisch gebundene Carbonfaserbewehrung der ersten Generation 50 3.3.4 Mineralisch gebundene Carbonfaserbewehrung der zweiten Generation 52 3.3.5 Vorkonditionierung 53 3.4 Feinbetonmatrix 54 3.4.1 Ausgangsmaterialien und Zusammensetzung 54 3.4.2 Herstellung und Eigenschaften des frischen Feinbetons 55 3.4.3 Festbetoneigenschaften 56 4 Experimentelle Methoden 59 4.1 Einseitiger Auszugsversuch 59 4.1.1 Allgemeines 59 4.1.2 Probekörpergeometrie 60 4.1.3 Herstellung, Nachbehandlung, Vorkonditionierung 60 4.1.4 Prüfung bei Temperaturen bis 200 °C (Verfahren I) 61 4.1.5 Prüfung bei Temperaturen über 200 °C (Verfahren II) 63 4.1.6 Aufbereitung, Darstellung und Auswertung der Messergebnisse 64 4.1.6.1 Numerische Vereinfachung der gemessenen Verschiebungs-Auszugskraftbeziehungen 64 4.1.6.2 Darstellung und Normierung der Werte der Auszugskraft 65 4.1.6.3 Darstellung und Auswertung der Einzugsweg-Kraftkurven 66 4.1.6.4 Ermittlung der Verbundsteifigkeit 68 4.1.6.5 Ermittlung der Auszugsarbeit 68 4.1.7 Kritische Bewertung der Versuchsanordnungen 69 4.1.7.1 Probekörpergeometrie und Spannungszustände 69 4.1.7.2 Messtechnik 70 4.1.7.3 Prüfungen bei hohen Temperaturen 70 4.2 Dehnkörperversuch 72 4.2.1 Allgemeines 72 4.2.2 Probekörpergeometrie 72 4.2.3 Herstellung und Nachbehandlung 73 4.2.4 Prüfung und Messmethoden 74 4.2.5 Auswertung der Messergebnisse 75 4.2.5.1 Kraft-Dehnungs-Verhalten und Faserspannung-Dehnungs-Verhalten 75 4.2.5.2 Rissentwicklung 75 4.2.6 Kritische Bewertung der Versuchsanordnung 77 4.2.6.1 Probekörpergeometrie und Materialauswahl 77 4.2.6.2 Messtechnik 77 4.3 Gefügeanalytische Verfahren 78 4.3.1 Mikroskopische Untersuchungen 78 4.3.1.1 Rasterelektronenmikroskopie -REM 78 4.3.1.2 Digitalmikroskopie 79 4.3.2 Thermoanalytische Messverfahren 79 4.3.3 Quecksilberporosimetrie 80 5 Untersuchungsprogramm 81 5.1 Betrachtete Materialien 81 5.2 Festlegung der Prüftemperaturen 81 5.3 Einseitiger Auszugsversuch 82 5.3.1 Prüfung bei Raumtemperatur 82 5.3.2 Prüfung bei erhöhten Temperaturen 82 5.4 Dehnkörperversuch 85 5.5 Begleitende analytische Untersuchungen 86 6 Experimentelle Ergebnisse 87 6.1 Einseitiger Auszugsversuch bei 20 °C 87 6.1.1 Referenzbewehrungen 87 6.1.2 Mineralisch gebundene Bewehrung der ersten Generation 88 6.1.3 Mineralisch gebundene Bewehrung der zweiten Generation 90 6.1.4 Schubspannung-Auszugsweg-Beziehungen 92 6.1.5 Auszugsweg vs. Einzugsweg 93 6.1.5.1 Referenzbewehrungen 93 6.1.5.2 Mineralisch gebundene Bewehrung der ersten Generation 94 6.1.5.3 Mineralisch gebundene Bewehrung der zweiten Generation 95 6.2 Einseitiger Auszugsversuch bei erhöhten Temperaturen 97 6.2.1 Referenzbewehrungen 97 6.2.2 Mineralisch gebundene Bewehrung der ersten Generation 98 6.2.3 Mineralisch gebundene Bewehrung der zweiten Generation 99 6.2.4 Vorkonditionierte mineralisch gebundene Bewehrungen 100 6.3 Dehnkörperversuch 102 6.3.1 Kraft-Dehnungs-Verhalten und Faserspannung-Dehnungs-Verhalten 102 6.3.2 Rissbreiten und Rissabstände 104 6.3.2.1 Referenzbewehrungen 104 6.3.2.2 Mineralisch gebundene Bewehrung der ersten Generation 106 6.3.2.3 Mineralisch gebundene Bewehrung der zweiten Generation 107 6.3.2.4 Zusammenfassung 108 6.4 Gefügeanalytische Untersuchungen 110 6.4.1 Thermoanalytische Untersuchungen 110 6.4.2 Ergebnisse der Quecksilber-Porosimetrie 111 7 Bewertung der Ergebnisse 113 7.1 Verbundverhalten 113 7.1.1 Unterteilung der Verbundkurve 113 7.1.2 Kennwerte der Verbundkurve 114 7.1.2.1 Reine Kraftwerte 114 7.1.2.2 Verbundmodul 115 7.1.2.3 Auszugsarbeit 115 7.1.3 Einflussfaktoren und Phänomene 116 7.1.3.1 Raumtemperatur 116 7.1.3.2 Erhöhte Temperatur 119 7.2 Bemessungs-Modell im Grenzzustand der Gebrauchstauglichkeit (GZG) 122 7.2.1 Dehnkörper 122 7.2.1.1 Trag- und Verformungsverhalten 122 7.2.1.2 Rissentwicklung/Lasteinleitungslänge 123 7.2.1.3 Rissbreitenbemessung 129 7.2.2 Endverankerungslänge 130 7.2.2.1 Tragverhalten und Rissentwicklung 130 7.2.2.2 Bemessung der Einbindelänge und Rissbreiten 133 8 Baupraktische Dimension der Erkenntnisse 136 8.1 Ausgangsmaterialien 136 8.1.1 Carbonfaser-Bewehrung 136 8.1.2 Feinbetonmatrix 136 8.1.3 Verbundbaustoff 137 8.2 Potentielle Anwendungsfelder 139 8.3 Bauen neu denken! 141 9 Zusammenfassung und Ausblick 142 9.1 Zusammenfassung 142 9.1.1 Verbundverhalten 142 9.1.2 Bemessungs-Modell für den Grenzzustand der Gebrauchstauglichkeit 142 9.2 Ausblick 144 10 Literaturverzeichnis 146 Anhang A: Abkürzungen, Formelzeichen/Symbole, Einheiten 154 Anhang B: Messkurven Auszugsversuche bei Raumtemperatur 158 Anhang C: Messkurven bei erhöhten Temperaturen 167 Anhang D: Messkurven Dehnkörperversuche 179
10

Great Barriere Reef: 2023

Goethe, Tanja 17 November 2023 (has links)
Der eingereichte Entwurf mit dem Titel „Great Barriere Reef“ spielt mit der Form der Vase. Im Bildbeitrag öffnet und faltet sich der Umraum der Vase mit Nischen um den zentralen Korpus. Der Entwurf stellt modellhaft einen Typ Bauwerk vor, der idealerweise Wohnen und gartenbauliche Strukturen standardisiert zusammenfasst.

Page generated in 0.4361 seconds