Spelling suggestions: "subject:"cardinal""
41 |
Exploiting self-monitoring sample views for cardinality estimationLarson, Per-Ake, Lehner, Wolfgang, Zhou, Jingren, Zabback, Peter 13 December 2022 (has links)
Good cardinality estimates are critical for generating good execution plans during query optimization. Complex predicates, correlations between columns, and user-defined functions are extremely hard to handle when using the traditional histogram approach. This demo illustrates the use of sample views for cardinality estimations as prototyped in Microsoft SQL Server. We show the creation of sample views, discuss how they are exploited during query optimization, and explain their potential effect on query plans. In addition, we also show our implementation of maintenance policies using statistical quality control techniques based on query feedback.
|
42 |
Robust Query Optimization for Analytical Database SystemsHertzschuch, Axel 25 September 2023 (has links)
Querying and efficiently analyzing complex data is required to gain valuable business insights, to support machine learning applications, and to make up-to-date information available. Therefore, this thesis investigates opportunities and challenges of selecting the most efficient execution strategy for analytical queries. These challenges include hard-to-capture data characteristics such as skew and correlation, the support of arbitrary data types, and the optimization time overhead of complex queries. Existing approaches often rely on optimistic assumptions about the data distribution, which can result in significant response time delays when these assumptions are not met. On the contrary, we focus on robust query optimization, emphasizing consistent query performance and applicability. Our presentation follows the general select-project-join query pattern, representing the fundamental stages of analytical query processing. To support arbitrary data types and complex filter expressions in the select stage, a novel sampling-based selectivity estimator is developed. Our approach exploits information from filter subexpressions and estimates correlations that are not captured by existing sampling-based methods. We demonstrate improved estimation accuracy and query execution time. Further, to minimize the runtime overhead of sampling, we propose new techniques that exploit access patterns and auxiliary database objects such as indices. For the join stage, we introduce a robust optimization approach by developing an upper-bound join enumeration strategy that connects accurate filter selectivity estimates –e.g., using our sampling-based approach– to join ordering. We demonstrate that join orders based on our upper-bound join ordering strategy achieve more consistent performance and faster workload execution on state-of-the-art database systems. However, besides identifying good logical join orders, it is crucial to determine appropriate physical join operators before query plan execution. To understand the importance of fine-grained physical operator selections, we exhaustively execute fixed join orders with all possible operator combinations. This analysis reveals that none of the investigated query optimizers fully reaches the potential of optimal operator decisions. Based on these insights and to achieve fine-grained operator selections for the previously determined join orders, the thesis presents a lightweight learning-based physical execution plan refinement component called. We show that this refinement component consistently outperforms existing approaches for physical operator selection while enabling a novel two-stage optimizer design. We conclude the thesis by providing a framework for the two-stage optimizer design that allows users to modify, replicate, and further analyze the concepts discussed throughout this thesis.:1 INTRODUCTION
1.1 Analytical Query Processing . . . . . . . . . . . . . . . . . . . 12
1.2 Select-Project-Join Queries . . . . . . . . . . . . . . . . . . . 13
1.3 Basics of SPJ Query Optimization . . . . . . . . . . . . . . . . . 14
1.3.1 Plan Enumeration . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . 15
1.4 Robust SPJ Query Optimization . . . . . . . . . . . . . . . . . . 16
1.4.1 Tail Latency Root Cause Analysis . . . . . . . . . . . . . . . . 17
1.4.2 Tenets of Robust Query Optimization . . . . . . . . . . . . . . 19
1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 SELECT (-PROJECT) STAGE
2.1 Sampling for Selectivity Estimation . . . . . . . . . . . . . . . 24
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Combined Selectivity Estimation (CSE) . . . . . . . . . . . . . 29
2.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Beta Estimator for 0-Tuple-Situations . . . . . . . . . . . . . . 33
2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Beta Distribution in Non-0-TS . . . . . . . . . . . . . . . . . 35
2.3.3 Parameter Estimation in 0-TS . . . . . . . . . . . . . . . . . . 37
2.3.4 Selectivity Estimation and Predicate Ordering . . . . . . . . . 39
2.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4 Customized Sampling Techniques . . . . . . . . . . . . . . . . . . 53
2.4.1 Focused Sampling . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.2 Conditional Sampling . . . . . . . . . . . . . . . . . . . . . . 56
2.4.3 Zone Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3 JOIN STAGE: LOGICAL ENUMERATION
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.2 Join Cardinality Upper Bound . . . . . . . . . . . . . . . . . . 64
3.2 Upper Bound Join Enumeration with Synopsis (UES) . . . . . . . . . 66
3.2.1 U-Block: Simple Upper Bound for Joins . . . . . . . . . . . . . 67
3.2.2 E-Block: Customized Enumeration Scheme . . . . . . . . . . . . . 68
3.2.3 UES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . 72
3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4 JOIN STAGE: PHYSICAL OPERATOR SELECTION
4.1 Operator Selection vs Join Ordering . . . . . . . . . . . . . . . 77
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . 80
4.2.2 Bandit Optimizer (Bao) . . . . . . . . . . . . . . . . . . . . . 81
4.3 TONIC: Learned Physical Join Operator Selection . . . . . . . . . 82
4.3.1 Query Execution Plan Synopsis (QEP-S) . . . . . . . . . . . . . 83
4.3.2 QEP-S Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.3 QEP-S Design Considerations . . . . . . . . . . . . . . . . . . 87
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.1 Performance Factors . . . . . . . . . . . . . . . . . . . . . . 90
4.4.2 Rate of Improvement . . . . . . . . . . . . . . . . . . . . . . 92
4.4.3 Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.4 TONIC - Runtime Traits . . . . . . . . . . . . . . . . . . . . . 97
4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5 TWO-STAGE OPTIMIZER FRAMEWORK
5.1 Upper-Bound-Driven Join Ordering Component . . . . . . . . . . . . 101
5.2 Physical Operator Selection Component . . . . . . . . . . . . . . 103
5.3 Example Query Optimization . . . . . . . . . . . . . . . . . . . . 103
6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A APPENDIX
A.1 Basics of Query Execution . . . . . . . . . . . . . . . . . . . . 123
A.2 Why Q? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.3 0-TS Proof of Unbiased Estimate . . . . . . . . . . . . . . . . . 125
A.4 UES Upper Bound Property . . . . . . . . . . . . . . . . . . . . . 127
A.5 TONIC – Selectivity-Aware Branching . . . . . . . . . . . . . . . 128
A.6 TONIC – Sequences of Query Execution . . . . . . . . . . . . . . . 129
|
43 |
Cardinality estimation in ETL processesLehner, Wolfgang, Thiele, Maik, Kiefer, Tim 22 April 2022 (has links)
The cardinality estimation in ETL processes is particularly difficult. Aside from the well-known SQL operators, which are also used in ETL processes, there are a variety of operators without exact counterparts in the relational world. In addition to those, we find operators that support very specific data integration aspects. For such operators, there are no well-examined statistic approaches for cardinality estimations. Therefore, we propose a black-box approach and estimate the cardinality using a set of statistic models for each operator. We discuss different model granularities and develop an adaptive cardinality estimation framework for ETL processes. We map the abstract model operators to specific statistic learning approaches (regression, decision trees, support vector machines, etc.) and evaluate our cardinality estimations in an extensive experimental study.
|
44 |
Abstract Logics and Lindström's Theorem / Abstrakta Logiker och Lindströms SatsBengtsson, Niclas January 2023 (has links)
A definition of abstract logic is presented. This is used to explore and compare some abstract logics, such as logics with generalised quantifiers and infinitary logics, and their properties. Special focus is given to the properties of completeness, compactness, and the Löwenheim-Skolem property. A method of comparing different logics is presented and the concept of equivalent logics introduced. Lastly a proof is given for Lindström's theorem, which provides a characterization of elementary logic, also known as first-order logic, as the strongest logic for which both the compactness property and the Löwenheim-Skolem property, holds.
|
Page generated in 0.0671 seconds