• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 77
  • 19
  • 17
  • 15
  • 14
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cascaded single stage distributed amplifiers

Banyamin, Ben Yovel January 2000 (has links)
No description available.
2

Development of the inspection system for the splice plane of the cascaded fiber

Huang, Jung-bin 09 September 2005 (has links)
To get better EDFA performance, we have to improve the coupling efficiency of semiconductor laser diode(LD) and fiber optic; also, increase the LD¡¦s power to achieve. There are plenty of ways to have higher coupling efficiency out there. Some of them even can reach 90% or better coupling efficiency. However, because of light field property, high-power LD output will not be able to apply to high coupling efficiency structure. Therefore, using cascaded fiber can improve coupling efficiency and maintain its characteristic in high-power laser output environment. Cascaded fiber is connecting SMF and GIF together. Although cascaded fiber can increase high-power LD output of coupling efficiency, it has 5% to 10% of loss during manufacture because of the inspect error of melting surface. We use CCD to observe the cascaded fiber¡¦s melting surface. Then, we pair with special light source to do the examination. Thus, we can overcome the obstacle, do automatically manufacture of the cascaded fiber in a small area, and reduce the coupling loss of cascaded fiber.
3

Bridging the gulf between microfluidics and high throughput industrial applications

Miller, Brian Maxdell January 2015 (has links)
The use of biosensors and microfluidics devices is often limited by constraints in terms of volumetric throughput due to the small dimensions of devices in microfluidics and of expensive and complicated sample preparation steps necessary to ensure the operation of biosensing platforms. This can be due to high initial sample volume with low concentration analytes or complex media matrices from which analytes are extracted. While working to analyse Cryptosporidium presence in drinking water a novel technique was developed. The huge advantages from using a label-free, buffer-free hydrodynamic mechanism in terms of cost, coupled with the ease of simply scaling a single design to match any target size and the ability manufacture these quickly and easily using cheap and readily available robust materials (i.e. acrylic sheet) may allow a revolution in the scope of microfluidics applications. Using a cascaded array of hydrodynamic focusing devices uniquely designed for parallelised operation from a single pump or pressure source, the array can be tailored to meet the specific requirements of many applications, in particular high volume and low concentration target analyte enrichment from complex media.
4

Dynamic Modeling and Cascaded Control for a Multi-Evaporator Supermarket Refrigeration System

Gupta, Ankush 1986- 14 March 2013 (has links)
The survey from US Department of Energy showed that about one-third of energy consumption in US is due to air conditioning and refrigeration systems. This significant usage of electricity in the HVAC industry has prompted researchers to develop dynamic models for the HVAC components, which leads to implementation of better control and optimization techniques. In this research, efforts are made to model a multi-evaporator system. A novel dynamic modeling technique is proposed based on moving boundary method, which can be generalized for any number of evaporators in a vapor compression cycle. The models were validated experimentally on a commercial supermarket refrigeration unit. Simulation results showed that the models capture the major dynamics of the system in both the steady state and transient external disturbances. Furthermore the use of MEMS (microelectromechanical) based Silicon Expansion Valves (SEVs) have reportedly shown power savings as compared to the Thermal Expansion Valves (TEVs). Experimental tests were conducted on a supermarket refrigeration unit fitted with the MEMS valves to explain the cause of these potential energy savings. In this study an advanced cascaded control algorithm was also designed to control the MEMS valves. The performance of the cascaded control architecture was compared with the standard Thermal Expansion Valves (TEVs) and a commercially available Microstaq (MS) Superheat Controller (SHC). The results reveal that the significant efficiency gains derived on the SEVs are due to better superheat regulation, tighter superheat control and superior cooling effects in shorter time period which reduces the total run-time of the compressor. It was also observed that the duty cycle was least for the cascaded control algorithm. The reduction in duty cycle indicates early shut-off for the compressor resulting in maximum power savings for the cascaded control, followed by the Microstaq controller and then the Thermal Expansion Valves.
5

Output limitations to single stage and cascaded 2-2.5μm light emitting diodes

Hudson, Andrew Ian 01 December 2014 (has links)
Since the advent of precise semiconductor engineering techniques in the 1960s, considerable effort has been devoted both in academia and private industry to the fabrication and testing of complex structures. In addition to other techniques, molecular beam epitaxy (MBE) has made it possible to create devices with single mono-layer accuracy. This facilitates the design of precise band structures and the selection of specific spectroscopic properties for light source materials. The applications of such engineered structures have made solid state devices common commercial quantities. These applications include solid state lasers, light emitting diodes and light sensors. Band gap engineering has been used to design emitters for many wavelength bands, including the short wavelength (SWIR) infrared region which ranges from 1.5 to 2.5 μm [1]. Practical devices include sensors operating in the 2-2.5 μm range. When designing such a device, necessary concerns include the required bias voltage, operating current, input impedance and especially for emitters, the wall-plug efficiency. Three types of engineered structures are considered in this thesis. These include GaInAsSb quaternary alloy bulk active regions, GaInAsSb multiple quantum well devices (MQW) and GaInAsSb cascaded light emitting diodes. The three structures are evaluated according to specific standards applied to emitters of infrared light. The spectral profiles are obtained with photo or electro-luminescence, for the purpose of locating the peak emission wavelength. The peak wavelength for these specimens is in the 2.2-2.5μm window. The emission efficiency is determined by employing three empirical techniques: current/voltage (IV), radiance/current (LI), and carrier lifetime measurements. The first verifies that the structure has the correct electrical properties, by measuring among other parameters the activation voltage. The second is used to determine the energy efficiency of the device, including the wall-plug and quantum efficiencies. The last provides estimates of the relative magnitude of the Shockley Read Hall, radiative and Auger coefficients. These constants illustrate the overall radiative efficiency of the material, by noting comparisons between radiative and non-radiative recombination rates.
6

Cascaded plasmon resonances for enhanced nonlinear optical response

Toroghi, Seyfollah 01 January 2014 (has links)
The continued development of integrated photonic devices requires low-power, small volume all-optical modulators. The weak nonlinear optical response of conventional optical materials requires the use of high intensities and large interaction volumes in order to achieve significant light modulation, hindering the miniaturization of all-optical switches and the development of lightweight transmission optics with nonlinear optical response. These challenges may be addressed using plasmonic nanostructures due to their unique ability to confine and enhance electric fields in sub-wavelength volumes. The ultrafast nonlinear response of free electrons in such plasmonic structures and the fast thermal nonlinear optical response of metal nanoparticles, as well as the plasmon enhanced nonlinear Kerr-type response of the host material surrounding the nanostructures could allow ultrafast all-optical modulation with low modulation energy. In this thesis, we investigate the linear and nonlinear optical response of engineered effective media containing coupled metallic nanoparticles. The fundamental interactions in systems containing coupled nanoparticles with size, shape, and composition dissimilarity, are evaluated analytically and numerically, and it is demonstrated that under certain conditions the achieved field enhancement factors can exceed the single-particle result by orders of magnitude in a process called cascaded plasmon resonance. It is demonstrated that these conditions can be met in systems containing coupled nanospheres, and in systems containing non-spherical metal nanoparticles that are compatible with common top-down nanofabrication methods such as electron beam lithography and nano-imprint lithography. We show that metamaterials based on such cascaded plasmon resonance structures can produce enhanced nonlinear optical refraction and absorption compared to that of conventional plasmonic nanostructures. Finally, it is demonstrated that the thermal nonlinear optical response of metal nanoparticles can be enhanced in carefully engineered heterogeneous nanoparticle clusters, potentially enabling strong and fast thermal nonlinear optical response in system that can be produced in bulk through chemical synthesis.
7

Cascaded High Voltage Converter with Variable Control for Pulsed Electric Field Applications

Loza, Emmanuel 01 June 2012 (has links) (PDF)
Living a sustainable lifestyle while facing increasing population and decreasing natural resources has become one of humanity’s largest challenges. Locating fossil fuels is becoming more difficult while the demand for them to power our societies is ever increasing. Instead of finding more efficient methods of extracting fossil fuels, developing technologies that create renewable substitutes for fossil fuels is now the strategy. Algae biofuel matches fossil fuel performance while also meeting the criteria for renewable energy. The focus now shifts to finding methods for commercially producing algae biofuel. Therefore, the objective of this thesis is to develop a system that provides the flexibility in finding the optimum operating conditions for lysing algae. Lysing is the process of disrupting the cell membrane in order to isolate the cellular components necessary to produce biofuel. The proposed system consists of cascaded power converters that provide a pulse output voltage in order to create a pulsed electric field (PEF) to lyse algae. The proposed system is unique from any known PEF systems because it provides the ability to independently adjust peak voltage, pulse width and frequency of the output voltage. This in turn provides great flexibility in determining optimum pulse voltage at various operating conditions for lysing algae. The system was tested on its ability to control the required variables while maintaining independence from the other variables. The new network was also designed and tested on how well it regulated the specific output waveform under the effects of different load currents as well as variations in the input voltage.
8

STUDY OF FULLY-MIXED HYBRID THERMAL ENERGY STORAGE WITH PHASE CHANGE MATERIALS FOR SOLAR HEATING APPLICATIONS

Abdelsalam, Mohamed 11 1900 (has links)
A novel design of hybrid thermal energy storage (HTES) using Phase Change Material (PCM) was evaluated using a mathematical model. Both single and multi-tank (cascaded) storage were explored to span small to large-scale applications (200-1600 litres). The storage element was based on the concept of a fully-mixed modular tank which is charged and discharged indirectly using two immersed coil heat exchangers situated at the bottom and top of the tank. A three-node model was developed to simulate different thermal behaviors during the operation of the storage element. Experiments were conducted on full-scale 200-l single-tank sensible heat storage (SHS) and hybrid thermal energy storage (HTES) to provide validation for the mathematical model. The HTES incorporated rectangular PCM modules submerged in the water tank. Satisfactory agreement was found between the numerical results and the experimental results obtained by Mather (2000) on single and multi-tank SHS. In addition, good agreement was noticed with the experiments performed by the author on single-tank SHS and HTES at McMaster University. The developed model was found to provide high levels of accuracy in simulating different operation conditions of the proposed design of storage element as well as computational efficiency. A parametric study was undertaken to investigate the potential benefits of the HTES over the SHS, operating under idealistic conditions. The HTES can perform at least two times better than the SHS with the same volume. The PCM volume fraction, melting temperature and properties were found to have critical impact on the storage gains of the HTES. All the parameters must be adjusted such that: (1) the thermal resistance of the storage element is minimized, and (2) most of the energy exchange with the storage element takes place in the latent heat form. The performance of the single-tank HTES was evaluated numerically while operating in a solar thermal domestic hot water (DHW) system for a single-family residence. The PCM parameters were selected to maximize the solar fraction during the operation on a typical spring day in Toronto. The use of the HTES can reduce the tank volume by 50% compared to the matched size of the SHS tank. However, the HTES was found to underperform the SHS when the system was operated in different days with different solar irradiation intensities. The effect of different draw patterns was also investigated. The results indicated that thermal storage is needed only when the energy demand is out-of-phase with the energy supply. For the same daily hot water demand, different consumption profiles; ex. dominant morning, dominant evening, dominant night and dispersed consumptions, showed slight impact on the performance of the system. The concept of multi-tank (cascaded) HTES storage was explored for medium/large scale solar heating applications such as for restaurants, motels, and multi-family residences. The design was based on the series connection of modular tanks through the bottom and top heat exchangers. Each individual tank had a PCM with different melting temperature. The results showed that the cascaded storage system outperformed the single-tank system with the same total volume as a result of the high levels of sequential or tank-to-tank stratification. The use of the cascaded HTES resulted in slight improvement in the solar fraction of the system. / Thesis / Doctor of Philosophy (PhD)
9

The Modeling and Control of a Cascaded-Multilevel Converter-Based STATCOM

Sirisukprasert, Siriroj 23 April 2004 (has links)
This dissertation is dedicated to a comprehensive study of static synchronous compensator (STATCOM) systems utilizing cascaded-multilevel converters (CMCs). Among flexible AC transmission system (FACTS) controllers, the STATCOM has shown feasibility in terms of cost-effectiveness in a wide range of problem-solving abilities from transmission to distribution levels. Referring to the literature reviews, the CMC with separated DC capacitors is clearly the most feasible topology for use as a power converter in the STATCOM applications. The controls for the CMC-based STATCOM were, however, very complicated. The intricate control design was begun without well-defined system transfer functions. The control compensators were, therefore, randomly selected. The stability of the system was achieved by trial and error processes, which were time-consuming and ineffective. To be able to operate in a high-voltage application, a large number of DC capacitors are utilized in a CMC-based STATCOM. All DC capacitor voltages must be balanced in order to avoid over-voltages on any particular link. Not only do these uneven DC voltages introduce voltage stress on the semiconductor switches, but they also lower the quality of the synthesized output waveforms of the converter. Previous researches into DC capacitor voltage-balancing techniques were very straightforward, in that individual voltage compensators were added into the main control loop. However, the compensator design for these individual loops is very problematic because of the complexity of the voltage-loop transfer functions. Basically, the trial and error technique again provides the simplest way to achieve acceptable compensators. Moreover, the greater number of voltage levels, the more complex the control design, and the main controller must perform all of the feedback control procedures. As a result, this approach potentially reduces the reliability of the controller. The goal of this dissertation is to achieve high-performance, reliable, flexible, cost-effective power stages and controllers for the CMC-based STATCOM. Major contributions are addressed as follows: 1) optimized design for the CMC-based STATCOM power stages and passive components, 2) accurate models of the CMC for reactive power compensations in both ABC and DQ0 coordinates, 3) an effective decoupling power control technique, 4) DC-link balancing strategies; and 5) improvements in the CMC topology. To enhance the modularity and output voltage of the CMC, the high-switching-frequency, high-power H-bridge building block (HBBB) and the optimized design for its power stage and snubber circuits are first proposed. The high-switching-frequency feature is achieved by utilizing the Virginia Tech-patented emitter turn-off (ETO) thyristor. Three high-power HBBB prototypes were implemented, and their performance was experimentally verified. To simplify the control system design, well-defined models of the CMC in both ABC and DQ0 coordinates are proposed. The proposed models are for the CMC with any number of voltage levels. The key system transfer functions are achieved and used in the control design processes. To achieve independent power control capability, the control technique, called the decoupling power control, is proposed. By applying this control technique, real and reactive power components can be controlled separately. In order to balance the DC capacitor voltages, a new, effective pulse width modulation (PWM) technique, which is suitable for any number of H-bridge converters, is proposed. The proposed cascaded PWM algorithm can be practically realized into the field programmable gate arrays (FPGA), and its complexity is not affected by the number of voltage levels. In addition, the complexity of the main controller, which is essentially based on the digital signal processor (DSP), is no longer a function of the number of the output voltage levels. The basic structure of the cascaded PWM is modular, which, in general, enhances the modularity of the CMC power stages. With the combination of the decoupling power control and the cascaded PWM, a CMC with any number of voltage levels can be simply modeled as a three-level cascaded converter, which is the simplest topology to deal with. This significantly simplifies and optimizes the control design process. To verify the accuracy of the proposed models and the performance of the control system for the CMC-based STATCOM, a low-power, seven-level cascaded-based STATCOM hardware prototype is implemented. The key control procedures are performed by a main controller, which consists of a DSP and an FPGA. The simulation and experimental results indicate the superior performance of the proposed control system, as well as the precision of the proposed models. / Ph. D.
10

Modeling and Simulation of a Cascaded Three-Level Converter-Based SSSC

Hawley, Joshua Christiaan 06 September 2004 (has links)
This thesis is dedicated to a comprehensive study of static series synchronous compensator (SSSC) systems utilizing cascaded-multilevel converters (CMCs). Among flexible AC transmission system (FACTS) controllers, the SSSC has shown feasibility in terms of cost-effectiveness in a wide range of problem-solving abilities from transmission to distribution levels. Referring to the literature reviews, the CMC with separated DC capacitors is clearly the most feasible topology for use as a power converter in the SSSC applications. The control for the CMC-Based SSSC is complicated. The design of the complicated control strategy was begun with well-defined system transfer functions. The stability of the system was achieved by trial and error processes, which were time-consuming and ineffective. The goal of this thesis is to achieve a reliable controller design for the CMC-based SSSC. Major contributions are addressed as follows: 1) accurate models of the CMC for reactive power compensations in both ABC and DQ0 coordinates, and 2) an effective decoupling power control technique. To simplify the control system design, well-defined models of the CMC-Based SSSC in both ABC and DQ0 coordinates are proposed. The proposed models are for the CMC-Based SSSC focus on only three voltage levels but can be expanded for any number of voltage levels. The key system transfer functions are derived and used in the controller design process. To achieve independent power control capability, the control technique, called the decoupling power control used in the design for the CMC-Based STATCOM is applied. This control technique allows both the real and reactive power components to be independently controlled. With the combination of the decoupling power control and the cascaded PWM, a CMC with any number of voltage levels can be simply modeled as a three-level cascaded converter, which is the simplest topology to deal with. This thesis focuses on the detailed design process needed for a CMC-Based SSSC. / Master of Science

Page generated in 0.0792 seconds