Spelling suggestions: "subject:"catégories derivées"" "subject:"catégories dérivée""
1 |
Sur les A-infini-catégoriesLefèvre-Hasegawa, Kenji 06 November 2003 (has links) (PDF)
Nous étudions les A-infini-algèbres Z-graduées (non nécessairement connexes) et leurs A-infini-modules. En utilisant les constructions bar et cobar ainsi que les outils de l'algèbre homotopique de Quillen, nous décrivons la localisation de la catégorie des A-infini-algèbres par rapport aux A-infini-quasi-isomorphismes. Nous adaptons ensuite ces méthodes pour décrire la catégorie dérivée DA d'une A-infini-algèbre augmentée A. Le cas où A n'est pas muni d'une augmentation est traité différemment. Néanmoins, lorsque A est strictement unitaire, sa catégorie dérivée peut être décrite de la même manière que dans le cas augmenté. Nous étudions ensuite deux variantes de la notion d'unitarité pour les A-infini-algèbres : l'unitarité stricte et l'unitarité homologique. Nous montrons que d'un point de vue homotopique, il n'y a pas de différence entre ces deux notions. Nous donnons ensuite un formalisme qui permet de définir les A-infini-catégories comme des A-infini-algèbres dans certaines catégories monoïdales. Nous généralisons à ce cadre les constructions fondamentales de la théorie des catégories : le foncteur de Yoneda, les catégories de foncteurs, les équivalences de catégories... Nous montrons que toute catégorie triangulée algébrique engendrée par un ensemble d'objets est A-infini-prétriangulée, c'est-à-dire qu'elle est équivalente à H^0 Tw A, où Tw A est l'A-infini-catégorie des objets tordus d'une certaine A-infini-catégorie A. Nous démontrons ainsi une partie des énoncés d'algèbre homologique presentés par M. Kontsevich pendant son cours ``Catégories triangulées et géométrie'' à l'ENS en 1998.
|
Page generated in 0.0531 seconds