• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 632
  • 170
  • 81
  • 68
  • 36
  • 19
  • 14
  • 10
  • 7
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 1276
  • 193
  • 181
  • 169
  • 118
  • 116
  • 113
  • 110
  • 106
  • 99
  • 95
  • 89
  • 86
  • 85
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

CH4 Reforming for Synthesis Gas Production over Supported Ni Catalysts

Song, Hoon Sub January 2010 (has links)
Partial oxidation of CH4, CO2 reforming of CH4, and oxidative CO2 reforming of CH4 to produce synthesis gas at 700°C over supported Ni catalysts have been studied. A Ni/Mg-Al catalyst was prepared by the solid phase crystallization (spc-) method starting from a hydrotalcite-type (HT) anionic precursor. From XRD analysis, only Ni0.5Mg2.5Al catalyst consists of the layered hydrotalcite-type structure; not Ni0.5Ca2.5Al and Ni/Al2O3 catalysts. By TPR test, the Ni0.5Mg2.5Al-HT catalyst requires a high reduction temperature than the Ni0.5Ca2.5Al catalyst. It implies that the Ni0.5Mg2.5Al-HT which has a layered structure shows the stronger interaction strength between the molecules. It might increase the resistance of coke formation on the surface of the catalyst. For the reaction tests, the Ni0.5Ca2.5Al showed the highest initial activity for synthesis gas production for all reactions; but, its activity was decreased quickly due to coke formation except during the partial oxidation of CH4. The Ni0.5Mg2.5Al-HT showed a relatively higher reactivity compared to the equilibrium level than Ni/Al2O3 catalyst; and it shows very stable reactivity than other catalysts. By TPO test, the Ni0.5Mg2.5Al-HT has the lower amount of coke formed during the reaction than the Ni0.5Ca2.5Al catalyst. It confirms that the Ni0.5Mg2.5Al-HT catalyst has stronger resistance to coke formation; and it leads to provide stable reactivity in any reforming conditions at high temperature. Therefore, the Ni0.5Mg2.5Al-HT catalyst was the most promising catalyst in terms of activity and stability for partial oxidation, CO2 reforming, and oxidative CO2 reforming of CH4. The Ni0.5Mg2.5Al-HT catalyst was used to investigate the CO2 reforming of CH4 kinetics. With increasing CH4 partial pressures at constant CO2 partial pressure, the rates of CH4 consumption were increased. However, with increasing CO2 partial pressure at constant CH4 partial pressure, CH4 consumption rates was increased at lower CO2 partial pressure, but turned to independent at higher CO2 partial pressure. When the partial pressure of H2 was increased, the CO formation rate was decreased; it confirmed that the reverse water-gas shift (RWGS) reaction was occurring during the CO2 reforming of CH4 reaction. In addition, the reaction kinetic expression was proposed when the CH4 dissociation step was considered as a rate-limiting step.
292

CATALYTIC SUPERCRITICAL WATER GASIFICATION OF SEWAGE SLUDGE/SECONDARY PULP/PAPER-MILL SLUDGE FOR HYDROGEN PRODUCTION

Zhang, Linghong 19 October 2012 (has links)
Supercritical water gasification (SCWG) is an innovative hydrothermal technique, employing supercritical water (SCW, T≥374oC, P≥22.1 MPa) as the reaction media, to convert wet biomass or aqueous organic waste directly into hydrogen (H2)-rich synthetic gas (syngas). In the first stage of this research, a secondary pulp/paper-mill sludge (SPP, provide by AbitibiBowater Thunder Bay Operations) was gasified at temperatures of 400-550oC for 20 to 120 min in a high-pressure batch reactor for H2 production. The highest H2 yield achieved was 14.5 mol H2/kg SPP (on a dry basis) at 550oC for 60 min. In addition, SPP exhibited higher H2-generation potential than sewage sludges, likely attributed to its higher pH and higher volatile matter and alkali salt contents. In the second stage, a novel two-step process for sludge treatment was established. The first step involved the co-liquefaction of SPP with waste newspaper in a batch reactor at varying mixing ratios, aimed at converting the organic carbons in the feedstocks into valuable bio-crude and water-soluble products. The highest heavy oil (HO) yield (26.9 wt%) was obtained at 300oC for 20 min with a SPP-to-newspaper ratio of 1:2. This co-liquefaction process transformed 39.1% of the carbon into HOs, where 16.3% of the carbon still remained in the aqueous waste. Next, an innovative Ru0.1Ni10/γ-Al2O3 catalyst (10 wt% Ni, Ru-to-Ni molar ratio=0.1), with long-term stability and high selectivity for H2 production, was developed for the SCWG of 50 g/L glucose, where no deactivation was observed after 33 h on stream at 700oC, 24 MPa and a WHSV (weight hourly space velocity) of 6 h-1. The H2 yield was maintained at ~50 mol/kg feedstock. The addition of small amounts of Ru to Ni10/γ-Al2O3 was found to be effective in enhancing Ni dispersion and increasing the reducibility of NiO. Finally, the Ru0.1Ni10/γ-Al2O3 catalyst together with an activated carbon (AC) supported catalyst (Ru0.1Ni10/AC) were utilized for treating the aqueous by-product from sludge-newspaper co-liquefaction using a continuous down-flow tubular reactor. More than 90% of the carbon in the waste was destroyed at 700oC with the highest H2 yield of 71.2 mol/kg carbon noted using Ru0.1Ni10/AC. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2011-04-27 17:20:49.193
293

Investigation of the polymer electrolyte membrane fuel cell catalyst layer microstructure

Dobson, Peter Unknown Date
No description available.
294

Badoga, Sandeep_PhD_thesis_April_2015

2015 April 1900 (has links)
Bitumen-derived heavy gas oil contains large amounts of sulfur (~4.0 wt.%) and nitrogen (~0.4 wt.%), which need to be lowered before it becomes suitable as a feedstock for refineries. The most widely used upgrading process is hydrotreating, and the conventional catalyst used for hydrotreating is Ni or Co and Mo or W supported on γ-Al2O3. Additionally, environmentally driven regulations impose strict limits on sulfur and nitrogen levels in transportation fuels. Therefore, the main focus of this work was to enhance the activity of a NiMo supported catalyst through its modification and to improve its selectivity to removal of bulky sulfur- and nitrogen-containing compounds from heavy gas oil under industrial hydrotreating conditions. This work was divided into four phases, and this thesis summarizes the research outcomes of each phase. The first phase examined the effects of chelating ligands, specifically, ethylenediaminetetraacetic acid (EDTA), on hydrotreating activity and the sulfidation mechanism. EDTA was seen to have a beneficial effect on hydrotreating activity. Detailed mechanistic aspects of interactions between support and EDTA, EDTA and metallic species, support and metal, support and active phase, and metallic species and metallic species at different reaction conditions, were also studied. Characterization by XANES revealed that the presence of a chelating agent delayed nickel sulfidation, which was the main cause of improvement in hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities. It also showed that EDTA plays a role in redistribution of active phases during sulfidation and favors the formation of octahedral molybdenum oxides. The second phase studied the effects of support modification and combinations of different supports and EDTA. In this phase, several mesoporous materials, including M-SBA-15 (M= Al, Ti and Zr), mesoporous mixed metal oxides (TiO2-Al2O3, ZrO2-Al2O3 andSnO2-Al2O3) and mesoporous metal oxides (ZrO2, Al2O3), were synthesized and used as support materials for a NiMo catalyst. NiMo/M-SBA-15 catalysts showed higher HDS and HDN activities and, the increase in activity is attributed to incorporation of heteroatoms in an SBA-15 matrix, which resulted in increase in metal support interaction, acidic strength and dispersion of active metals. The addition of EDTA to these catalysts helps in the formation of octahedral molybdenum oxide, which are easily reducible during sulfidation. This is evident from the XANES Mo LIII-edge study of the oxide catalysts. The increase in hydrodenitrogenation (HDN), hydrodesulfurization (HDS) and hydrodearomatization (HDA) activities as compared to that shown by the NiMo/γ-Al2O3 catalyst were also observed on addition of EDTA in large-pore, high-surface-area mesoporous zirconia supported NiMo catalysts. The incorporation of different metal oxides in alumina, as in the case of mixed metal oxides, resulted in a change in acidic strength and metal support interactions. It was observed with acridine-FTIR analysis that the catalysts with higher acidic strength tightly held acridine at high temperatures. This implies that catalysts with higher acidity are prone to inhibition by nitrogen-containing compounds present in feed, which will affect catalytic activity. The HDS and HDN activities for hydrotreating of heavy gas oil suggest that mesoporous alumina and titania-alumina supported catalysts perform better as compared to the conventional NiMo/γ-Al2O3 catalyst. Therefore, the effects of EDTA to Ni molar ratio (EDTA/Ni = 0 to 2) on the activities of the NiMo/MesoAl2O3 and NiMo/MesoTiO2-Al2O3 catalysts were studied, and EDTA was observed to have a negative impact on catalytic activity for these catalysts. This is attributed to a decrease in the active metal dispersion in these catalysts caused by the addition of EDTA. The catalysts NiMo/MesoAl2O3 and NiMo/MesoTiO2-Al2O3 without EDTA showed high active metal dispersion due to their high surface area and ordered structure. The third phase studied the combined effects of phosphorus and EDTA on the hydrotreating activity of NiMo supported catalysts. The effects of method of phosphorus addition (sequential and co-impregnation method) were also studied. When phosphorus was added using a co-impregnation method, as in the catalyst NiMoP/MesoAl2O3(CI), an increase in HDN, HDA and HDS activities was observed. However, the catalysts containing both EDTA and phosphorus showed a decrease in HDS and HDN activities. The fourth phase included a kinetic study using the Power Law and L-H models. The catalyst, NiMoP/mesoAl2O3(CI), was found to have higher HDN and HDS activities as compared to a conventional γ-Al2O3 supported catalyst containing phosphorus.
295

Biodiesel production from sunflower oil using microwave assisted transesterification / by Nokuthula E. Magida

Magida, Nokuthula Ethel January 2013 (has links)
Biofuels are becoming more attractive worldwide because of the high energy demands and the fossil fuel resources that are being depleted. Biodiesel is one of the most attractive alternative energy sources to petroleum diesel fuel and it is renewable, non toxic, biodegradable, has low sulphur content and has a high flash point. Biodiesel can be generated from domestic natural resources such as coconuts, rapeseeds, soybeans, sunflower, and waste cooking oil through a commonly used method called transesterification. Transesterification is a reaction whereby oil (e.g. sunflower oil) or fats react with alcohol (e.g. methanol) with or without the presence of a catalyst (e.g. potassium hydroxide) to form fatty acid alkyl esters (biodiesel) and glycerol. The high-energy input for biodiesel production remains a concern for the competitive production of bio-based transportation fuels. However, microwave radiation is a method that can be used in the production of biodiesel to reduce the reaction time as well as to improve product yields. Sunflower oil is one of the biodiesel feedstocks that are used in South Africa and is widely used in cooking and for frying purposes. This study aims to use microwave irradiation to reduce the energy input for biodiesel production. The effect of various reaction variables, including reaction time (10 – 60 seconds), microwave power (300 – 900 watts), catalyst (potassium hydroxide) loading (0.5 – 1.5 wt%) and methanol to oil molar ratio (1:3 – 1:9) on the yield of fatty acid methyl ester (biodiesel) was investigated. The quality of biodiesel produced was analysed by Gas Chromatography (GC), Fourier Transform Infrared Spectroscopy (FTIR) and viscometry. The FTIR results confirmed the presence of functional groups of the FAME produced during transesterification. The results showed that transesterification can proceed much faster under microwave irradiation than when using traditional heating methods. The interaction between the alcohol and oil molecules is significantly improved, leading to shorter reaction times (seconds instead of hours) and improved diesel yields. The highest biodiesel yield obtained was 98% at 1:6 oil-to-methanol molar ratio for both 1 wt% and 1.5 wt% potassium hydroxide (KOH) at a reduced reaction time (30 seconds). The chemical composition of FAME (biodiesel) obtained from different conditions i contained palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) and 70% linoleic acid (C18:2). The physical properties (cetane number, viscosity, density and FAME content) of biodiesel produced met the SANS 1935 specification. The energy consumption was reduced from 1.2 kWh with the traditional transesterification to 0.0067 kWh with the microwave transesterification. Microwave irradiation was shown to be effective in significantly lowering the energy consumption for production of biodiesel with good quality for small scale producers. / Thesis (MSc (Engineering Sciences in Chemical Engineering))--North-West University, Potchefstroom Campus, 2013
296

Biodiesel production from sunflower oil using microwave assisted transesterification / by Nokuthula E. Magida

Magida, Nokuthula Ethel January 2013 (has links)
Biofuels are becoming more attractive worldwide because of the high energy demands and the fossil fuel resources that are being depleted. Biodiesel is one of the most attractive alternative energy sources to petroleum diesel fuel and it is renewable, non toxic, biodegradable, has low sulphur content and has a high flash point. Biodiesel can be generated from domestic natural resources such as coconuts, rapeseeds, soybeans, sunflower, and waste cooking oil through a commonly used method called transesterification. Transesterification is a reaction whereby oil (e.g. sunflower oil) or fats react with alcohol (e.g. methanol) with or without the presence of a catalyst (e.g. potassium hydroxide) to form fatty acid alkyl esters (biodiesel) and glycerol. The high-energy input for biodiesel production remains a concern for the competitive production of bio-based transportation fuels. However, microwave radiation is a method that can be used in the production of biodiesel to reduce the reaction time as well as to improve product yields. Sunflower oil is one of the biodiesel feedstocks that are used in South Africa and is widely used in cooking and for frying purposes. This study aims to use microwave irradiation to reduce the energy input for biodiesel production. The effect of various reaction variables, including reaction time (10 – 60 seconds), microwave power (300 – 900 watts), catalyst (potassium hydroxide) loading (0.5 – 1.5 wt%) and methanol to oil molar ratio (1:3 – 1:9) on the yield of fatty acid methyl ester (biodiesel) was investigated. The quality of biodiesel produced was analysed by Gas Chromatography (GC), Fourier Transform Infrared Spectroscopy (FTIR) and viscometry. The FTIR results confirmed the presence of functional groups of the FAME produced during transesterification. The results showed that transesterification can proceed much faster under microwave irradiation than when using traditional heating methods. The interaction between the alcohol and oil molecules is significantly improved, leading to shorter reaction times (seconds instead of hours) and improved diesel yields. The highest biodiesel yield obtained was 98% at 1:6 oil-to-methanol molar ratio for both 1 wt% and 1.5 wt% potassium hydroxide (KOH) at a reduced reaction time (30 seconds). The chemical composition of FAME (biodiesel) obtained from different conditions i contained palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) and 70% linoleic acid (C18:2). The physical properties (cetane number, viscosity, density and FAME content) of biodiesel produced met the SANS 1935 specification. The energy consumption was reduced from 1.2 kWh with the traditional transesterification to 0.0067 kWh with the microwave transesterification. Microwave irradiation was shown to be effective in significantly lowering the energy consumption for production of biodiesel with good quality for small scale producers. / Thesis (MSc (Engineering Sciences in Chemical Engineering))--North-West University, Potchefstroom Campus, 2013
297

Numerical simulation of continuously regenerating diesel particulate filter

Yamauchi, Kazuki, Yamamoto, Kazuhiro January 2013 (has links)
No description available.
298

Separation of Grubbs-based catalysts with nanofiltration / Percy van der Gryp

Van der Gryp, Percy January 2008 (has links)
Thesis (Ph.D. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2009.
299

Separation of Grubbs-based catalysts with nanofiltration / Percy van der Gryp

Van der Gryp, Percy January 2008 (has links)
Thesis (Ph.D. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2009.
300

Catalytic Gasification of Activated Sludge in Near-critical Water

Afif, Elie Jose Antonio 30 November 2011 (has links)
This thesis was the report of the research done on the near-critical water gasification (NCWG) as an application for activated sludge treatment. The research started with the use of model compounds and binary mixtures of these compounds as feeds for the NCWG. High gasification yields were obtained using a commercial catalyst (Raney nickel), and it was found that interactions between model compounds in the binary mixtures resulted in lowering the gasification efficiencies. The research then shifted to the use of actual activated sludge samples and the search for novel catalysts for that application. Almost 70% of the sludge was gasified in the presence of the high amounts of Raney nickel. Hydrogen was the main product in the gas phase. However, Raney nickel lost half its activity after only 8 minutes of exposure to supercritical water. For some model compounds, novel catalysts formulated in our laboratories had better activities than the commercial ones. This was not the case for the NCWG of activated sludge.

Page generated in 0.4709 seconds