• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the anticancer properties of pleurocidins: a preclinical evaluation

Hilchie, Ashley 05 August 2011 (has links)
Cationic antimicrobial peptides (CAPs) are small peptides that constitute an important defence against microbial pathogens. Certain CAPs also possess anticancer properties. NRC-03 and NRC-07 are pleurocidins derived from winter and yellowtail flounder, respectively. The purpose of this investigation was to study the anticancer properties of NRC-03 and NRC-07. NRC-03 and NRC-07 killed breast cancer cells, including P-glycoprotein-overexpressing cells, in a time-dependent manner that peaked at 4 h. NRC-03 and NRC-07 lysed breast cancer cells by a mechanism that involved cell binding, mitochondrial destabilization, nuclear localization, and significant membrane damage. Interestingly, NRC-07, but not NRC-03, caused DNA fragmentation. NRC-03 and NRC-07 killed normal human epithelial cells, but did not kill endothelial cells or fibroblasts, or lyse human erythrocytes. NRC-03, and to a lesser extent NRC-07, had chemo-sensitizing properties, suggesting promise for their inclusion in combinational treatment regimens. Importantly, intratumoural injections of NRC-03 or NRC-07 inhibited tumour growth in a mouse model of breast cancer. Fetal bovine serum dose-dependently reduced cell killing by NRC-03. NRC-03 was degraded in human and mouse serum, which limited its potency. NRC-03- and NRC-07-induced cytotoxicity correlated with expression of several different negatively-charged molecules, rationalizing the generation of [D]-NRC-03, which carries the same positive charge as NRC-03, and was more potent but less selective for cancer cells than NRC-03. [D]-NRC-03 was also cytolytic and exhibited in vivo anticancer properties. To further test the clinical potential of NRC-03- and NRC-07-resistant cells were generated. NRC-03 and NRC-07 bound to resistant cells to a lesser extent than parental cells and were phenotypically distinct. Importantly, NRC-03- and NRC-07-resistant cells were killed by chemotherapeutic drugs, as well as [D]-NRC-03. These studies demonstrate that NRC-03, NRC-07, and [D]-NRC-03 are cytolytic peptides that kill breast cancer cells in vitro and in vivo. While more potent than NRC-03, [D]-NRC-03 requires further modification to minimize its toxicity toward normal cells. Although cancer cells may become resistant to NRC-03 and NRC-07 over time, resistant cells are still killed by other cytotoxic drugs, thereby reinforcing the value of adding these peptides to combinational regimens for the treatment of breast cancer.
2

Unexpected biochemistry determines endotoxin structure in two enteric gram-negatives

Di Pierro, Erica Jacqueline 25 August 2015 (has links)
Most gram-negative organisms require lipopolysaccharide and its membrane anchor, lipid A, for growth and survival. Also known as endotoxin, lipid A is synthesized via a nine-step enzymatic process, culminating in a conserved hexa-acylated, bis-phosphorylated disaccharide of glucosamine. This framework is often altered by condition- or species-specific lipid A modifications, which change the biochemical properties of the molecule in response to and to defend against environmental stress signals. Here, we expound on two stories in different gram-negative organisms, both involving novel or unanticipated biochemistry that impacts lipid A structure. First, the missing acyltransferase in the Epsilonproteobacterium Helicobacter pylori lipid A biosynthesis pathway is identified. This enzyme transfers a secondary acyl chain to the 3'-linked primary acyl chain of lipid A like E. coli LpxM, but shares almost no sequence similarity with the E. coli acyltransferase. It is reannotated as LpxJ and demonstrated to possess an unprecedented ability to act before the 2'-secondary acyltransferase, LpxL, as well as the 3-deoxy-D-manno-octulosonic acid transferase, KdtA. LpxJ is one member of a large class of acyltransferases found in a diverse range of organisms that lack an E. coli LpxM homolog, suggesting that LpxJ participates in lipid A biosynthesis in place of an LpxM homolog. The second story focuses on regulation of modifications to endotoxin structure that occur after the conserved biosynthesis pathway. E. coli pmrD is shown to be required for PmrAB-dependent lipid A modifications in conditions that exclusively activate PhoPQ; this result proves that PmrD connects PhoPQ and PmrAB despite previous reports that it is an inactive connector in this organism. Further, RNA sequencing and polymyxin B survival assays solidify the role of E. coli pmrD in influencing expression of pmrA and its target genes and promoting survival during exposure to cationic antimicrobial peptides. Notably, the presence of an unknown factor or system capable of activating pmrD to promote lipid A modification in the absence of the PhoPQ system is also revealed. In all, the findings presented here expand our understanding of alternative approaches to lipid A biosynthesis and the complex systems that regulate modifications of this dynamic molecule.
3

In Situ Mapping of Membranolytic Protein-membrane Interactions by Combined Attenuated Total Reflection Fourier-transform Infrared Spectroscopy-atomic Force Microscopy (ATR-FTIR-AFM)

Edwards, Michelle 07 December 2011 (has links)
A combined attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR)-atomic force microscopy (AFM) platform was used to visualize and characterize membranolytic protein- and peptide-membrane interactions, allowing spectroscopic details to be correlated with structural features. Modifications to a previous combined platform permitted IR results for physiologically-relevant protein or peptide concentrations as well as provided nanometer-resolution height data for AFM. This combination provides greater insight than individual techniques alone. The interactions of hemolytic sticholysin proteins on a model red blood cell membrane showed evidence of conformational changes associated with a membrane-induced organization. In addition, the examination of a de novo cationic antimicrobial peptide on a model bacterial membrane showed that the peptide adopted a helical structure upon interaction with the membrane, and also provided evidence of membrane disruption and peptide aggregation. These results demonstrate that ATR-FTIR-AFM can be a powerful tool for understanding protein- and peptide-membrane interactions.
4

In Situ Mapping of Membranolytic Protein-membrane Interactions by Combined Attenuated Total Reflection Fourier-transform Infrared Spectroscopy-atomic Force Microscopy (ATR-FTIR-AFM)

Edwards, Michelle 07 December 2011 (has links)
A combined attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR)-atomic force microscopy (AFM) platform was used to visualize and characterize membranolytic protein- and peptide-membrane interactions, allowing spectroscopic details to be correlated with structural features. Modifications to a previous combined platform permitted IR results for physiologically-relevant protein or peptide concentrations as well as provided nanometer-resolution height data for AFM. This combination provides greater insight than individual techniques alone. The interactions of hemolytic sticholysin proteins on a model red blood cell membrane showed evidence of conformational changes associated with a membrane-induced organization. In addition, the examination of a de novo cationic antimicrobial peptide on a model bacterial membrane showed that the peptide adopted a helical structure upon interaction with the membrane, and also provided evidence of membrane disruption and peptide aggregation. These results demonstrate that ATR-FTIR-AFM can be a powerful tool for understanding protein- and peptide-membrane interactions.

Page generated in 0.1561 seconds