• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 497
  • 244
  • 116
  • 55
  • 33
  • 23
  • 18
  • 10
  • 8
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1268
  • 193
  • 163
  • 161
  • 141
  • 132
  • 112
  • 102
  • 102
  • 101
  • 96
  • 90
  • 89
  • 88
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The mechanical principles of cavity preparation for posterior cast gold restorations : to be presented as section A - Review of the literature, section B -Original contribution

Hyde, P. F January 1985 (has links)
Master of Dental Surgery / This work was digitised and made available on open access by the University of Sydney, Faculty of Dentistry and Sydney eScholarship . It may only be used for the purposes of research and study. Where possible, the Faculty will try to notify the author of this work. If you have any inquiries or issues regarding this work being made available please contact the Sydney eScholarship Repository Coordinator - ses@library.usyd.edu.au
62

Fabrication of Niobium sheet for RF cavities

Balachandran, Shreyas 15 May 2009 (has links)
This thesis investigated the microstructure and mechanical property of RRR( high purity) and RG (low purity) niobium (Nb) sheet material. RRR Nb is used in the fabrication RF cavities. Our method involves processing bulk niobium by equal channel angular extrusion (ECAE) and then cross rolling to obtain sheets. This work is a study of the effect different thermomechanical processing variables have on the microstructure niobium sheets. Recrystallization behaviors strongly depended on the purity levels. Tensile tests on sheets clearly indicated the anisotropy in the sheet material. The ductility of the sheet was found to be the largest at an angle of 45o to the rolling direction. There was no apparent relationship observed in the yielding behavior in the different samples. The formability of the sheet measured by the anisotropy ratio suggested a strong dependence of anisotropy on texture. Texture results obtained show that different routes of ECAE can lead to variety of textures in final sheet material. Correlations between the microstructure and the ECAE routes suggest that effective control of microstructure is possible by the thermomechanical steps followed in this study.
63

Leakage Prediction of Labyrinth Seals Having Advanced Cavity Shapes

Panicker, Sunil M. 2010 December 1900 (has links)
Labyrinth seals are widely used in various turbo machines including turbines, compressors and pumps. Their purpose is to prevent the backflow of the working fluid. This backflow is due to the leakage of the seal. This loss affects the efficiency of the turbo machine, so it becomes critically important to assess the leakage of the seals under the given operating conditions. The accuracy of prediction of leakage is also important for performing rotodynamic analysis. The geometric shape of the seal plays an important role in influencing the fluid flowing through the seals and the leakage rate. Many empirical seal leakage prediction models, useful from a design/analysis point of view, have been developed. Saikishan Suryanarayanan and Gerald. L .Morrison studied the influence of various geometric and flow parameters on the leakage of labyrinth seals with rectangular cavities. They proposed a leakage equation based on their Computational Fluid Dynamics (CFD) simulations using software FLUENT. However, many real world labyrinth seals do not have simple rectangular cavities. In particular, this thesis focuses on seals with Isosceles triangle shaped teeth, right triangle shaped teeth, and a NASA seal. In the present work, CFD simulations of labyrinth seals with advanced cavity shapes are performed and the results are compared with the predictions of the rectangular seal model. The results show that the advanced cavities like, Isosceles shaped seal were more efficient as compared to rectangular seals. The pressure drop, which was taken as one of the key parameters to adjudge the efficiency of seals showed negative behavior in some of the advanced cavity shaped seal. The advanced cavity shaped seals are used in various turbo machinery equipments like steam and gas turbines. This study shows that Isosceles cavity shaped seals are the most efficient among all the advanced cavity shapes used in the present study.
64

Fabrication and Characteristics of Fiber Grating External Cavity Lasers

Yang, Huei-Min 02 June 2004 (has links)
A new scheme of fabricating the tapered hyperbolic-end fibers (THEFs)microlenses using unique etching and fusion techniques is proposed. TheTHEFs were fabricated by symmetrically tapering the fiber during theetching process and hyperbolically lensing the tip during the fusing process.The tapered hyperbolic microlenses have demonstrated up to 82% couplingefficiency for a laser with an aspect ratio of 1:1.5. The influence of the tapering asymmetry on the coupling has also been investigated experimentally and theoretically. The axially symmetrical taperedmicrolenses of the THEFs showed that far-field profiles were well approximated to a Gaussian profile, while the asymmetric taper had deviated significantly from a Gaussian profile. A theoretical analysis illuminated a larger wavefront transformation of the hemispherical microlenses. A lesser phase aberration of the normalized optical path difference (OPD) was found in the hyperbolic-end lens, and that resulted in more than 2 dB improvement in the coupling efficiency when compared to the currently available hemispherical microlenses. The high-coupling performance of the hyperbolic microlens was due to an improved wavefront matching between the laser and the fiber, which was one of the most important contributions in this study.The 1.55 µm fiber grating external cavity lasers (FGECLs), packaged with THEF microlens for coupling the fiber grating external cavity, have been investigated for different combinations of coupling efficiency (£b) and Bragg reflectivity (Rg). Various tapered hyperbolic-end fiber microlenses with different coupling efficiency have been fabricated for this study. The FGL of higher £b = 72% and Rg = 0.52 has a stronger resonant feedback as the spectral output showed a single longitudinal mode with the side-mode-suppression-ratio (SMSR) greater than 45dB, a high output power of greater than 5mW, and a lower threshold current. However, for the case of £b = 68% and Rg = 0.35, the FGL exhibited a more stable SMSR against the variation of pumping current and temperature. Numerical simulations have also been performed on the SMSR at different coupling efficiencies and Bragg reflectivity for the FGLs. The high performance of the FGLs can be achieved through a higher coupling efficiency between a laser diode and a single-mode fiber. The calculated SMSR showed an excellent agreement with the measured data.
65

Packaging of 2.5 Gb/s Directly-Modulated Non-AR Coated Fiber Grating External Cavity Laser

Wang, Shih-Hung 07 July 2004 (has links)
This study proposes a low cost potentiall with non-AR coated fiber grating external cavity laser (FGECL) module to apply the metro/access network. The components inside the module include uncoated FP (Fiber-Perot) laser chip, PIN detector, substrate, and cooler. The processes of package are following: (1) to utilize the die-bonder to fix the FP laser and the PIN detector on the substrate, (2) to utilize the heating apparatus to make the cooler fixed on the butterfly housing and the substrate fixed on the cooler, (3) to utilize the 353ND paste to make the thermistor fixed on the substrate, and (4) to utilize the electrothermal heating machine to melt indium wire and then adjust the fiber lens provided with higher coupling efficiency of fiber pigtail by tweezer to couple light into the fiber inside the butterfly housing. This study achieves a FGECL module with the output power of larger than 2mW and the side-mode suppression ratio (SMSR) of more than 38dB. Finally, we measure eye diagram and bit-error-rate at 2.5Gb/s of the FGECL module to analyze the impedance matching of laser diode, current signal and the limit of the dispersion to the optical communication system. The performance of the FGECL module can meet the ITU-T G.957 standard.
66

Applying loop mirror and ring resonator in the fabrication and design of semiconductor laser

Huang, Tzu-chien 21 July 2005 (has links)
We present design and fabrication of ring cavity semiconductor lasers and single ring filter with simple fabrication processes. A 1.55-£gm symmetric quantum well InGaAlAs epi-layer wafer is used to fabricate the lasers. In device design, we apply loop mirror to obtain reflection instead of cleaved facet and take 1x2, and 2x2 Multi-Mode Interference (MMI) with different splitting ratio(50%:50%¡F15%:85%) as a coupler. Then we combine MMI couplers with ring cavities to control the output of specific wavelength. Therefore we can obtain filter and lasers with the property of wavelength selection. We also design two kinds of special waveguides to achieve low reflectivity. One is a tapered spiral waveguide tail. The other waveguide is expanded in a curve and then cut off at the Brewster¡¦s angle. In loop mirror, two curvature radius(260,160£gm) were introduced to study bending loss and material loss. In single ring filter, we design two kinds of resonator lengths(1479,1385£gm) and the corresponding Free Spectrum Range (FSR) are 63.4, 67.75GHz, respectively. In fabrication, owing to the unstable dry etch condition for InGaAlAs, we adopted multi-step etch technology. In the part of curved waveguide, we also use this method to make deep-etching to increase the difference of refractive index between waveguide and the outside part. Finally, we use the etch solution (HBr:HCl:H2O2:H2O=5:4:1:70) to smooth the sidewall of the waveguide, and to reduce scattering loss of the device.
67

The Coupling Study of Single Frequency Operation from Fabry-Perot Laser and Fiber-Grating

Wu, Shun-Hao 29 June 2000 (has links)
The coupling of Fabry-Perot laser and fiber-grating for single frequency operation was studied experimentally and theoretically. A 1.55
68

The Study of Spectral Characteristics for Non-AR Coated Fiber Grating Lasers

Chen, Ming-Hung 24 June 2001 (has links)
ABSTRACT The spectral characteristics for non-AR coated fiber grating lasers were studied theoretically and experimentally. The lensed fiber was used to improve coupling efficiency between laser and fiber. The tapered fibers were fabricated by using the mixture of HF and oil with different density to increase etched taper angle. The coupling efficiency could reach more than 60%. A single-mode operation for a fiber grating external cavity laser (FGECL) was simulated. The results showed that the SMSR, emitted power, and wavelength drift were dependent on the related device parameters. Our calculations showed that the strong current-dependent SMSR oscillation was from the mode selection by the fiber grating external cavity and the heating effect in the Fabry-Perot (FP) laser. A 1.55mm FP laser chip that one facet was coated a high reflectivity (HR) of 90% and another facet was uncoated. In our experiment and simulation of FGECL, the reflectivity of fiber gratings were 50% and 70% and 86%, and the length of external cavity was about 0.9cm. The measured result of FGECL showed that the side-mode suppression ratio (SMSR) was more than 35dB and the output power was larger than 1.5mW at the injected current 2 to 3 times of threshold current. Furthermore, the spectrums of fiber grating external cavity lasers were studied in order to understand the external laser characteristics.
69

The Design and Fabrication of Ring Cavity Semiconductor Laser

Wang, Chun-Kai 24 June 2003 (has links)
This paper presents design and fabrication of ring cavity semiconductor lasers with simple fabrication processes and good potential for integration. A 1.55-£gm symmetric quantum well InGaAsP epi-layer wafer is used to fabricate the lasers. The fabrication processes involve a bi-level deep etching to reduce the bending losses. Two geometric types of ring cavity semiconductor lasers have been investigated. For the type 1 ring cavity in the form of race tracks, two different designs are presented. One has a single ring resonator (SRR) design and the other has a coupled double ring resonators (DRR) design. The resonator of the type 2 ring cavity is formed between a cleaved facet and a loop mirror. Both a single ring resonator (SRR) design and a double ring resonator (DRR) design are presented for this type of cavity also. The maximum saturation output light powers of 0.479 and 0.409 mW are observed in room temperature L-I measurements for type 1 and type 2 ring cavity semiconductor lasers respectively. The spontaneous emission spectra of the type 1 ring cavity semiconductor lasers show a red-shift phenomenon under increasing drive currents. The type 1 ring cavity semiconductor lasers with ring resonators of 100 and 200 £gm radii have also been found to exhibit an interesting wavelength clamping phenomenon of the output light.
70

Study on the Optical Characteristics of Quantum Dots in Coupled Cavity Structures

Tsui, Po-Ting 28 July 2010 (has links)
In this work, we studied the optical characteristics of the coupled double DBR structure. We use the conventional transfer matrix simulation to find the intermediate multilayer periods (NC), and control the position of the transmission peak and stop band. Sample is grown by solid source molecular beam epitaxy (MBE) on n+GaAs (001) substrate, and the InGaAs QDs (quantum dots) are grown in the coupled cavity structure. The 23 periods of DBR multilayer, GaAs (91.8 nm) / AlAs (108.1 nm), obtain 99.5% reflectivity in the 1260 nm wavelength by the simulation. After the simulation from the conventional transfer matrix method, we choose NC = 13.5, the position of the transmission peak are at 1177 and 1188 nm, and optical frequency difference = 2.27 THz (£G=11 nm) in this study.From PL spectra, we observed interference between the enhanced light fields of the two cavity modes and the agreement between measurement and simulation. This structure is potential to be a compact terahertz emission device or vertical cavity surface emitting laser in room temperature.

Page generated in 0.059 seconds