• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms of hormonal activation of Cdc25A and coactivation of estrogen receptor alpha by protein inhibitor of activated STAT3 (PIAS3)

Lee, Wan-Ru 15 May 2009 (has links)
The estrogen receptor (ER) is a ligand-activated transcription factor that regulates gene expression. The classical mechanisms of nuclear ER action include ligand-induced dimerization of ER which binds estrogen responsive elements (EREs) in promoters of target genes. In addition, non-genomic pathways of ER action have also been identified in breast cancer cells. Cdc25A is a tyrosine phosphatase that catalyzes dephosphorylation of cyclin/cyclin-dependent kinase complexes to regulate G1- to S-phase cell cycle progression. Cdc25A mRNA levels are induced by 17β-estradiol (E2) in ZR-75 breast cancer cells, and deletion analysis of the Cdc25A promoter identified the -151 to -12 region as the minimal E2-responsive sequence. Subsequent mutation/deletion analysis showed that at least three different cis-elements were involved in activation of Cdc25A by E2, namely, GC-rich Sp1 binding sites, CCAAT motifs, and E2F sites. Studies with inhibitors and dominant negative expression plasmids show that E2 activates Cdc25A expression through activation of genomic ERα/Sp1 and E2F1 and cAMP-dependent activation of NF-YA. Thus, both genomic and non-genomic pathways of estrogen action are involved in induction of Cdc25A in breast cancer cells. The PIAS family was initially identified as cytokine-induced inhibitors of STATs which contain several conserved domains involved in binding to other nuclear coactivators. In this study we have investigated coactivation of ERα by PIAS3 in breast cancer cell lines transiently cotransfected with the pERE3 constructs which contain three tandem EREs linked to a luciferase reporter gene. PIAS3 coactivated ERα-mediated transactivation in cells cotransfected with pERE3 and wild-type ERα. In contrast to many other coactivators, PIAS3 also enhanced transactivation of ERα when cells were cotransfected with the TAF1 ERα mutant. In addition, PIAS3 does not interact with activation function 2 (AF2) domain of ERα in a mammalian two-hybrid assay. These data indicate that coactivation of ERα by PIAS3 was AF2-domain independent. Analysis of several PIAS3 deletion mutants showed that the region containing amino acids 274 to 416 of PIAS3 are required for coactivation suggesting that the RING finger domain and acidic region of PIAS3 are important for interactions with wild-type ERα. These results demonstrate that PIAS3 coactivated ERα and this represents a non-classical LXXLL-independent coactivation pathway.
2

The Dynamics of the Unreplicated DNA Checkpoint in Xenopus laevis Embryos and Extracts

Adjerid, Nassiba 23 April 2008 (has links)
When unreplicated or damaged DNA is present, cell cycle checkpoint pathways cause cell cycle arrest by inhibiting cyclin-dependent kinases (Cdks). In Xenopus laevis, early embryonic development consists of twelve rapid cleavage cycles between DNA replication (S) and mitosis (M) without checkpoints or gap phases. However, checkpoints are engaged in Xenopus once the embryo reaches the midblastula transition (MBT). At this point, the embryo initiates transcription, acquires gap phases between S and M phases, and establishes a functional apoptotic program. During the cell cycle, there are two main checkpoints that regulate entrance into S and M phases. The focus of this study is the role of protein kinase Chk1 and the phosphatase Cdc25A in the DNA replication checkpoint. In the absence of active Chk1, Cdc25A activates cyclin dependent kinases (Cdks) allowing the cell to progress into S or M phase. Chk1 regulates cell cycle arrest in the presence of unreplicated DNA in somatic cells by phosphorylating Cdc25A and leading to its degradation. Chk1 is also transiently activated at the MBT in Xenopus laevis embryos, even when there is no block to DNA replication or damaged DNA. One goal of this work is to understand the developmental role and regulation of checkpoint signaling pathways due to its monitoring of DNA integrity within the cell. Chk1 plays a critical but not fully understood role in cell cycle remodeling and early embryonic development. In order to understand the function and regulation of Chk1 in checkpoints, the features of the MBT that activate Chk1 must be identified. The activation of Chk1 by two time-dependent events in the cell cycle, the critical nuclear to cytoplasmic (N/C) ratio and the cyclin E/Cdk2 maternal timer are explored in this study. Embryos treated with aphidicolin, resulting in a halted replication fork and therefore a reduced DNA concentration, were tested for Chk1 activation and Cdc25A degradation. Chk1 and Cdc25A were observed to undergo activation and degradation, respectively, in embryos with a reduced DNA concentration. In addition, embryos were injected with Δ34Xic cyclin E/Cdk2 inhibitor, in order to disturb the maternal timer and tested for Chk1 activation and Cdc25A degradation. Both Chk1 and Cdc25A were unaffected by the disruption of the cyclin E/Cdk2 maternal time in the embryo. Therefore, the N/C ratio and the cyclin E/Cdk2 maternal timer do not affect Chk1 activation and therefore Cdc25A degradation. Another means of characterizing the unreplicated DNA checkpoint is through the use of mathematical modeling of the checkpoint-signaling cascade of the cell cycle. Mathematical modeling is the translating of biological pathways into mathematical equations that can simulate interactions without performing laboratory experiments. The Novák-Tyson checkpoint model made important predictions of hysteresis and bistability in the frog egg checkpoint model, predictions that were later confirmed experimentally. The model was updated with additional interactions, such as those including Myt1, a second inhibitor kinase, and lamin proteins, which become phosphorylated at the onset of nuclear envelope breakdown (NEB) at entry into mitosis. Also, experimental data was fit into the model while maintaining hysteresis and bistability. Therefore, the unreplicated DNA checkpoint model was updated with new interactions and experimental data while still preserving previously identified dynamic characteristics of the system. As described, Cdc25A regulation is dynamic in the embryo. The checkpoint original model represents the activity of Cdc25 phosphatase on the mitosis promoting factor (MPF) that leads the cell into mitosis. In the checkpoint model, Cdc25C is the phosphatase activating MPF. However, the model does not include Cdc25A, which is an integral part of the checkpoint-signaling pathway due to its role in activating the cyclin/Cdk complex allowing entry into S and possibly M phase. Experimental studies were performed in which Cdc25A levels were reduced in embryos and extracts using Cdc25A morpholinos. Embryos and extracts showed delayed cell cycle and mitotic entry, demonstrating the importance of Cdc25A plays in the cell cycle. Based upon experimental data, the mathematical model of the DNA replication checkpoint was expanded to include Cdc25A. The expanded model should more accurately demonstrate how checkpoints affect the core cell cycle machinery. Cdc25A was incorporated into the model by gathering experimental data and designing a signaling cascade, which was translated into differential equations. The updated model was then used to simulate the effect of synthesis and degradation rates of Cdc25A on the entry into mitosis dynamics. Therefore, using mathematical modeling and experimental design, we can further understand the role that Cdc25A plays in cell cycle progression during development. Understanding the regulation of Chk1 activity at the MBT and the role of Cdc25A in checkpoint signaling will help us further characterize the dynamics of early embryonic development. The use of mathematical modeling and experimental tools both contribute to further our understanding of controls of the checkpoint signaling pathway and therefore leading us one step closer to truly being able to model a pathway and make predictions as to the behavior of the cell during early embryonic development. / Ph. D.
3

Role of the Mammalian Polo-Like Kinase 3(Plk3) in Cell Cycle Regulation and DNA Damage Checkpoints

Myer, David 03 April 2006 (has links)
No description available.
4

Efecte represor de Snail en la proliferació cel·lular

Virgós Soler, Ariadna 23 July 2008 (has links)
La Transició Epiteli-Mesènquima és el mecanisme pel qual les cèl·lules epitelials generades en regions particulars, poden dissociar-se de l'epiteli i migrar cap a nous destins, gràcies a uns canvis morfològics que transformen les cèl·lules epitelials en cèl·lules mesenquimals. Aquest procés fonamental durant el desenvolupament, també és rellevant en la progressió de tumors epitelials malignes i en tots dos casos les cèl·lules perden cohesió i adhesió i guanyen mobilitat. Aquests processos morfogènics impliquen una reorganització important del citoesquelet que serà incompatible amb un estat proliferatiu actiu, fins que les cèl·lules necessitin colonitzar un nou territori.Snail és un factor clau en la regulació dels processos EMT, tant en el desenvolupament com en la progressió tumoral gràcies a la seva capacitat de reprimir directament la transcripció de gens epitelials i promoure l'expressió de gens mesenquimals. Uns clons estables de dues línies cel·lulars epitelials, generats en el nostre grup proliferaven més lentament a l'expressar Snail de manera que ens vam proposar descriure el mecanisme utilitzat per Snail per fer disminuir la taxa de proliferació cel.lular al ser expressat ectòpicament en cèl.lules en cultiu que havien patit una EMT.Els resultats d'aquesta tesi indiquen que Snail bloqueja el cicle cel·lular al ser expressat en cèl·lules epitelials fent que disminueixin els nivells de proteïna CDC25A, fosfatasa que pot activar els complexes CDK-ciclina implicats en la progressió per diverses etapes del cicle. Els nostre estudi suggereix que Snail reté el mRNA de CDC25A al nucli, impedint que sigui exportat i traduit.
5

Rôle des facteurs de transcription stat3 dans la réponse aux inhibiteurs de topoisomerase : Implication dans la résistance aux traitements de chimiothérapie

Vigneron, Arnaud 21 December 2006 (has links) (PDF)
Les facteurs de transcription STAT3 sont activés dans de nombreuses tumeurs et leurs effets sur la prolifération et la survie suggéraient fortement que ces protéines puissent être impliquées à la fois dans la transformation cellulaire et dans l'échappement aux traitements classiques de chimiothérapie.<br />Nous nous sommes donc intéressés aux différents aspects impliquant STAT3 dans la réponse de lignées cellulaires aux agents génotoxiques de chimiothérapie, et plus particulièrement aux inhibiteurs de topoisomérase. Durant ces traitements, STAT3 interagit avec le répresseur transcriptionnel Rb et l'inhibiteur du cycle cellulaire p21. Ces deux protéines inhibent son activité transcriptionnelle, notamment sur les gènes c-myc et cdc25A, et permettent la mise en place de la sénescence induite par les dommages de l'ADN et la catastrophe mitotique. Cependant, en présence d'une activité constitutive de STAT3 induite par l'oncogène v-src, STAT3 empêche l'activation de Rb et de p21, favorise la résistance des cellules aux inhibiteurs de topoisomérase II, et génère de l'instabilité génomique. Finalement,<br />deux inhibiteurs de STAT3, le cetuximab, un anticorps monoclonal dirigé contre l'EGFR, et un inhibiteur de la tyrosine kinase c-src, sensibilisent des cellules colorectales aux inhibiteurs de topoisomérase I. L'inhibition de STAT3 empêche l'activation du gène Eme1 qui induit l'expression d'une protéine de réparation de l'ADN.<br />STAT3 est donc un facteur de résistance aux inhibiteurs de topoisomérase. Sa détection pourrait ainsi permettre de mieux prédire la réponse des patients à ces inhibiteurs, et son inhibition, dans les tumeurs où il est actif, pourrait permettre de les sensibiliser aux inhibiteurs de topoisomérase.

Page generated in 0.0367 seconds