• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micro-structuration de la surface des matériaux avec ligands bioactifs pour mimer la matrice extra-cellulaire osseuse / Micro-engineered substrates as bone extracellular matrix mimics

Bilem, Ibrahim 31 August 2016 (has links)
Actuellement, il est largement reconnu que la décision des cellules souches de maintenir leur caractère souche ou se différencier vers une lignée spécialisée dépend particulièrement de la nature de leur microenvironnement, appelé niche cellulaire. Une des composantes essentielles de cette niche cellulaire est la matrice extracellulaire (MEC), qui au-delà de sa fonction de support cellulaire, détermine le devenir des cellules souches en fonction de sa composition biochimique, sa structure et sa localisation. D’un point de vue rationnel, un biomatériau destiné à remplacer la fonction d’un tissu endommagé doit non seulement jouer le rôle d’échafaudage cellulaire mais également mimer les propriétés de la MEC dans son ensemble. Malheureusement, il est extrêmement difficile de concevoir des biomatériaux mimétiques de la MEC naturelle tenant compte de sa complexité structurelle et fonctionnelle. Pour pallier à cette problématique, il semble nécessaire d’effectuer un travail en amont de déconstruction/reconstruction de la complexité de la MEC en étudiant l’effet individuel puis combiné de ses propriétés sur la différenciation des cellules souches. Ce projet de doctorat rentre dans le cadre de ce travail et vise à déterminer le rôle spécifique ou concomitant de différentes propriétés inhérentes à la MEC sur la différenciation ostéoblastique des cellules souches mésenchymateuses humaines (hCSMs). En effet, nous avons évalué l’effet de la composition biochimique de la MEC et la distribution spatiale des ligands sur la différenciation des hCSMs, en fonctionnalisant la surface d’un matériau modèle avec les peptides RGD et/ou BMP-2, distribués d’une manière aléatoire ou structurée. / Actually, it is well-established that maintaining the stemness character of stem cells or eliciting their lineage-specific differentiation is closely related to the nature of their microenvironment, known as stem cell niche. The extracellular matrix (ECM), a key component of stem cell niche, not only provides a support function for stem cells but also dictates their fate decision. From a rational point of view, a biomaterial intended to replace a damaged tissue should mimic the natural ECM in all its aspects, including its biochemistry, 3D structure, topography, porosity, rigidity…. etc. Unfortunately, the design of biomaterials that fully mimic the natural ECM is still a big challenge, due to its high structural and functional complexity. Towards the development of finely-tuned biomaterials, it seems important to start by deconstructing and then reconstructing the complexity of the ECM. In this context, the thesis project, herein, seeks to evaluate both the individual and the synergistic effect of different properties inherent to the natural ECM on human mesenchymal stem cells (hMSCs) osteogenic differentiation. Indeed, we investigated whether the biochemical composition of the ECM and the spatial distribution of its components modulate hMSCs osteogenesis. This was achieved by creating different artificial ECMs, in vitro, containing RGD and/or BMP-2 mimetic peptides, distributed randomly or as specific micropatterns on the surface of a model material.
2

Lineage-specific roles of the Smarcd1 and Smarcd2 subunits of SWI/SNF complexes in hematopoiesis

Priam, Pierre 08 1900 (has links)
Durant l’hématopoïèse, les cellules souches hématopoïétiques peuvent soit s’autorenouveler soit se différencier dans les divers types de cellules matures constituant le système hématopoïétique. Un des modèles prédominants sur le développement du système hématopoïétique postule une différenciation par étape des différentes lignées le constituant. Ce modèle débute avec les cellules souches hématopoïétiques qui donnent naissance à des précurseurs multipotents qui peuvent à leur tour se différencier en précurseurs dédiées à la lignée lymphoïde ou myéloïde. Bien que la dernière décennie ait apporté de nombreuses connaissances sur les principales signalétiques transcriptionnelles impliquées dans le développement hématopoïétique, le détail des mécanismes moléculaires en jeu expliquant comment les cellules souches hématopoïétiques sont initialement amorcées puis complètement engagées vers une voie de différenciation reste toujours à élucider. Le travail de notre laboratoire indique que l’assemblage combinatoire du complexe de remodelage de la chromatine SWI/SNF est un élément clé parmi les mécanismes épigénétiques qui gouvernent le destin cellulaire et notamment la famille de sous-unités Smarcd qui comporte 3 membre alternatifs Smarcd1/2/3. Des analyses du transcriptome par séquençage haut débit ont montré que l’expression de la sous-unité Smarcd1 du complexe est élevée dans le compartiment des cellules souches, les précurseurs multipotents et les progénitures lymphoïdes tandis que la sous-unité Smarcd2 est principalement exprimée dans les précurseurs myéloïdes. En utilisant des modèles de délétion conditionnelle dans des modèles murins, nous avons démontré que Smarcd1 et Smarcd2 jouent des rôles critiques et lignés spécifiques durant l’hématopoïèse. Dans un premier temps, nous avons pu montrer que Smarcd1 collabore avec le facteur de transcription de la famille bHLH E2A pour spécifier le destin lymphoïde des précurseurs multipotents et qu’elle est donc absolument essentielle pour la lymphopoïèse. Notre travail sur les mécanismes moléculaires en jeu a pu montrer que Smarcd1 interagit directement avec E2A et est nécessaire pour l’accessibilité de la chromatine sur un ensemble de régions enrichies avec les modifications d’histones H3K27ac/H3K3me1 qui marquent des régions activatrices (« enhancer ») impliquées dans l’activation d’une signature lymphoïde dans les précurseurs multipotents. Le blocage de l’interaction entre Smarcd1 et E2A inhibe l’amorce de cette signature lymphoïde et bloque l’émergence de précurseurs destinés à la voie lymphocytaire. Concernant la fonction de Smarcd2, nous avons pu montrer que cette sous-unité est absolument nécessaire pour la granulopoïèse. Les souris ayant subi une délétion génétique de Smarcd2 deviennent très rapidement neutropéniques. Ce phénotype découle d'un blocage au stade de différenciation myélocyte/métamyélocyte, tandis que les autres lignées hématopoïétiques restent non affectées par la délétion. Nous avons pu identifier le facteur de transcription C/ebpƐ comme un partenaire essentiel de Smarcd2 qui interagit avec le complexe SWI/SNF sur les promoteurs de gènes de granules secondaires afin d’en activer la transcription. Les analyses du transcriptome que nous avons effectué lorsque l’interaction de Smarcd2 et C/ebpƐ est interrompue dans des précurseurs de granulocytes ont montré une diminution de l’expression des gènes de granules secondaires liée à une maturation incomplète des granulocytes menant au développement d’un syndrome de myélodysplasie au court du temps. / During hematopoiesis, hematopoietic stem cells (HSCs) either selfrenew or differentiate into all mature blood cell types through successive rounds of binary cell fate decisions. The prevailing model of hematopoiesis predicts a step-by-step model of lineage differentiation in which HSCs first give rise to multipotent progenitors that subsequently differentiate into myeloid and lymphoid restricted progenitors. Although key transcriptional pathways controlling hematopoietic development are beginning to be deciphered, detailed molecular mechanisms explaining how HSCs and progenitors are initially primed and then commit to the different hematopoietic cell lineages are lacking. Work from our laboratory indicates that combinatorial assembly of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex is a key epigenetic mechanism that governs cell fate decisions. Transcriptomics analyses revealed that expression of the Smarcd1 subunit is enriched in hematopoietic stem/progenitors and early lymphoid cells, while Smarcd2 is mainly expressed in myeloid progenitors. Using conditional knock-out mouse models, we demonstrated that Smarcd1 and Smarcd2 subunits perform critical and lineage-specific roles during hematopoiesis. First, we found that Smarcd1 collaborates with the bHLH transcription factor E2A to specify lymphoid cell fate during hematopoiesis and, therefore, is absolutely required for lymphopoiesis. Mechanistically, we showed that Smarcd1 physically interacts with E2A and is required for chromatin accessibility of a set of H3K27ac/H3K4me1-enriched enhancers that coordinate activation of the early lymphoid signature in hematopoietic stem cells. Impairing the interaction between Smarcd1 and E2A inhibits lymphoid lineage determination and the emergence of lymphoid-primed multipotent progenitors. Conversely, we showed that Smarcd2 is absolutely required for granulopoiesis. Smarcd2-deficient mice quickly become neutropenic due to a XIII block at the myelocyte/metamyelocyte stage of granulocyte maturation while other lineages remain unaffected. We discovered that Smarcd2 interacts with the transcription factor C/ebpε to recruit the mSWI/SNF complex on the promoter of secondary granule genes, thus inducing their transcriptional activation. As shown by transcriptomic analysis, impairing this interaction results in decreased expression of secondary granule genes, improper granulopoietic maturation, and development of a myelodysplastic-like syndrome over time. Altogether, this work identifies the Smarcd1 and Smarcd2 subunits of SWI/SNF complexes as master chromatin remodelers allowing the recruitment of lineage-specific transcription factors at key regulatory loci controlling lymphoid lineage priming and granulocyte development, respectively. More globally, these studies highlight that combinatorial assembly of alternative subunits of mSWI/SNF complexes is a key epigenetic mechanism controlling cell fate decisions during hematopoiesis.

Page generated in 0.1177 seconds