• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mesenchymal Stromal Cell and Chondrocyte Mobility in 3D Bioprinted Hydrogel Constructs

Lokshina, Alesia 01 January 2022 (has links) (PDF)
Osteoarthritis (OA) is a progressive cartilage degeneration disease with a complex pathologic mechanism. Although OA has devastating effects on patient quality of life and places a significant burden on the healthcare system, no disease-modifying drugs have been found, and surgical treatment options are often unsustainable. 3D bioprinting is a novel field within tissue engineering that focuses on developing biocompatible constructs that can be implanted to replace an organ or tissue. Such constructs have a great potential to become treatments for OA. Understanding cell mobility within hydrogels could play a vital role in advancing the development of biocompatible constructs. However, due to the novelty of bioprinting, limited research on cell mobility within hydrogels is available. Therefore, this project aims to fill the gap in existing research regarding cell mobility within bioprinted constructs with varying mechanical properties. To achieve this goal, green fluorescent protein-tagged mesenchymal stromal cells (MSCs) were developed to assess progenitor cell mobility in bioprinted hydrogel constructs. Constructs were printed with three zones: hydrogel with embedded chondrocytes or MSCs; hydrogel spacer; and chemoattractant. Designed constructs were bioprinted (BioAssemblyBot, Advanced Solutions) using GelMA:HAMA bioinks containing photoinitiator with varying bioink percentages. Cell viability and directional mobility within constructs were assessed by fluorescence viability assay and time-lapse fluorescence microscopy. The protocol to evaluate cell mobility in bioprinted constructs and optimized bioprinting settings for GelMA:HAMA bioinks were gained through this project. Overall, this project allowed us to fill the gap in existing knowledge regarding MSC and chondrocyte mobility in hydrogels and contribute to developing a novel treatment method for OA.
2

Alternative energy concepts for Swedish wastewater treatment plants to meet demands of a sustainable society

Brundin, Carl January 2018 (has links)
This report travels through multiple disciplines to seek innovative and sustainable energy solutions for wastewater treatment plants. The first subject is a report about increased global temperatures and an over-exploitation of natural resources that threatens ecosystems worldwide. The situation is urgent where the current trend is a 2°C increase of global temperatures already in 2040. Furthermore, the energy-land nexus becomes increasingly apparent where the world is going from a dependence on easily accessible fossil resources to renewables limited by land allocation. A direction of the required transition is suggested where all actors of the society must contribute to quickly construct a new carbon-neutral resource and energy system. Wastewater treatment is as required today as it is in the future, but it may move towards a more emphasized role where resource management and energy recovery will be increasingly important. This report is a master’s thesis in energy engineering with an ambition to provide some clues, with a focus on energy, to how wastewater treatment plants can be successfully integrated within the future society. A background check is conducted in the cross section between science, society, politics and wastewater treatment. Above this, a layer of technological insights is applied, from where accessible energy pathways can be identified and evaluated. A not so distant step for wastewater treatment plants would be to absorb surplus renewable electricity and store it in chemical storage mediums, since biogas is already commonly produced and many times also refined to vehicle fuel. Such extra steps could be excellent ways of improving the integration of wastewater treatment plants into the society. New and innovative electric grid-connected energy storage technologies are required when large synchronous electric generators are being replaced by ‘smaller’ wind turbines and solar cells which are intermittent (variable) by nature. A transition of the society requires energy storages, balancing of electric grids, waste-resource utilization, energy efficiency measures etcetera… This interdisciplinary approach aims to identify relevant energy technologies for wastewater treatment plants that could represent decisive steps towards sustainability.

Page generated in 0.0437 seconds