• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • Tagged with
  • 169
  • 169
  • 167
  • 68
  • 53
  • 33
  • 32
  • 32
  • 27
  • 25
  • 20
  • 20
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Axonal Regrowth of Olfactory Sensory Neurons After Chemical Ablation and Removal of Axonal Debris by Microglia

Chapman, Rudy 01 August 2020 (has links)
Olfactory sensory neurons (OSNs) are contained within the olfactory epithelium (OE) and are responsible for detecting odorant molecules in the air. The exposure of OSNs to the external environment is necessary for their function, but it also leaves them exposed to potentially harmful elements and thus results in a high turnover rate. Despite the high turnover, the olfactory sense is maintained throughout life through the division of a population of stem cells that produce new OSNs both during normal turnover and after an injury occurs in the OE. When new OSNs are born, they must extend axons from the OE to the olfactory bulb (OB) where they make specific synaptic contacts. To determine the timeline of axon extension in normal turnover and after a methimazole-induced injury, we used fate-tracing utilizing an inducible Cre-LoxP model in which a fluorescent reporter was expressed by neuronal precursors and subsequently used to track axonal growth as the OSNs matured. Our results show that axon extension in both conditions follow the same timeline. However, markers of synaptic connectivity in the OB were delayed after injury. The delay in synaptic connectivity was also corroborated with delays in olfactory behavior after injury, which took 40 days to recover to control levels. Additionally, we investigated the process of removal of axonal debris created after an injury. Immunohistochemical analysis after injury indicated upregulation of IBA1+ cells within the 3 olfactory nerve layer of the OB, suggesting a role of microglia in this process. These microglia also showed an activated morphology and some had very large cell bodies with multiple nuclei. Furthermore, qPCR analysis of post-injury OB tissue shows upregulation of the CD11b receptor that is expressed on microglia. Our results have also shown upregulation of components of the complement pathway after injury, which is suggestive of a mechanism that underlies axonal debris removal after injury in the OB. Taken together, these results shed light on the process by which the olfactory system is able to recover after injury and could lead to discovery of mechanisms that could translate to treatments for injuries in other areas of the nervous system.
52

Regulation of Translation and Synaptic Plasticity by TSC2

Hien, Annie 22 July 2020 (has links)
Mutations in TSC2 cause the disorder tuberous sclerosis (TSC), which has a high incidence of autism and intellectual disability. TSC2 regulates mRNA translation required for group 1 metabotropic glutamate receptor-dependent synaptic long-term depression (mGluR-LTD), but the identity of mRNAs responsive to mGluR-LTD signaling in the normal and TSC brain is largely unknown. We generated Tsc2+/- mice to model TSC autism and performed ribosome profiling to identify differentially expressed genes following mGluR-LTD in the normal and Tsc2+/- hippocampus. Ribosome profiling reveals that in Tsc2+/-mice, RNA-binding targets of Fragile X Mental Retardation Protein (FMRP) are increased. In wild-type hippocampus, induction of mGluR-LTD caused rapid changes in the steady state levels of hundreds of mRNAs, many of which are FMRP targets. Moreover, mGluR-LTD signaling failed to promote phosphorylation of eukaryotic elongation factor 2 (eEF2) in Tsc2+/- mice, and chemically mimicking phospho-eEF2 with low cycloheximide enhances mGluR-LTD in the Tsc2+/- brain. These results suggest a molecular basis for bidirectional regulation of synaptic plasticity by TSC2 and FMRP. Furthermore, deficient mGluR-regulated translation elongation contributes to impaired synaptic plasticity in Tsc2+/- mice.
53

Sensory Deprivation Induces Microglial Synapse Engulfment

Gunner, Georgia 20 July 2021 (has links)
Synaptic connectivity is highly plastic in early development and undergoes extensive remodeling in response to changes in neuronal activity and sensory experience. Microglia, the resident central nervous system macrophages, participate in shaping mature neuronal circuits by dynamically surveying the brain parenchyma and pruning away less active synaptic connections. However, it is unknown how changes in neuronal activity regulates microglial pruning within circuits and whether this activity-dependent pruning is necessary to achieve plasticity. Using the rodent somatosensory circuit, I identified that microglia engulf and eliminate synapses in the cortex following early postnatal (P4) unilateral removal of mouse whiskers. I found this early life microglial synaptic remodeling requires specific chemokine signaling between neurons and microglia. Mice that lack expression of either the neuronal chemokine CX3CL1 (fractalkine), or its microglial receptor CX3CR1, have significantly reduced microglial synapse engulfment and fail to eliminate synapses following whisker removal. To gain more insight into how this signaling is regulated, I performed both single-cell RNA sequencing of the primary somatosensory cortex as well as microglia-specific Translating Ribosome Affinity Purification (TRAP) sequencing. I identified that the majority of central nervous system (CNS) cell populations in the somatosensory cortex, including microglia, undergo transcriptional changes following whisker removal. Further, the transcriptional changes in microglia after whisker cauterization require expression of the receptor CX3CR1. Importantly, I also found that Adam10, a gene encoding the metalloprotease known to post-translationally cleave CX3CL1 into a soluble chemokine, is upregulated in the deprived cortex after whisker ablation. Pharmacological inhibition of ADAM10 inhibits microglia-mediated removal of synapses in the deprived cortex. These data support a mechanism by which cleavage of membrane-bound CX3CL1 by ADAM10 is necessary for neuronal signaling to microglia via CX3CR1 to induce transcriptional changes within microglia upstream of synaptic engulfment and elimination following sensory deprivation.
54

THE ROLE OF ENDOPLASMIC RETICULUM STRESS IN ETHANOL-INDUCED NEURODEGENERATION

Wang, Yongchao 01 January 2019 (has links)
Heavy ethanol use causes neurodegeneration manifested by neuronal loss and dysfunction. It is becoming imperative to delineate the underlying mechanism to promote the treatment of ethanol-induced neurodegeneration. Endoplasmic reticulum (ER) stress is a hallmark and an underlying mechanism of many neurodegenerative diseases. This study aims to investigate the role of ER stress in ethanol-induced neurodegeneration. In experimental design, adult mice were exposed to binge ethanol drinking by daily gavage for 1, 5, or 10 days and the response of ER stress was examined. We found the induction of ER stress appeared at 5 days and remained at 10 days. Moreover, the induction of ER stress was accompanied by an increase in neurodegeneration. With cell culture, we demonstrated that ethanol exposure resulted in neuronal apoptosis and that blocking ER stress by sodium phenylbutyrate (4-PBA) abolished ethanol-induced neuronal apoptosis, suggesting that ER stress contributes to ethanol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) responds to ER stress and has been identified as a protein upregulated in ethanol-exposed developmental mouse brains. To investigate its implication in ethanol-induced neurodegeneration, we established a central nervous system (CNS)-specific Manf knockout mouse model and examined the effects of MANF deficiency on ethanol-induced neuronal apoptosis and ER stress using a third-trimester equivalent mouse model. We found MANF deficiency worsened ethanol-induced neuronal apoptosis and ER stress and that blocking ER stress abrogated the harmful effects of MANF deficiency on ethanol-induced neuronal apoptosis. Moreover, a whole transcriptome RNA sequencing supported the involvement of MANF in ER stress modulation and revealed candidates that may mediate the ER stress-buffering capacity of MANF. Collectively, these data suggest that MANF is neuroprotective against ethanol-induced neurodegeneration via ameliorating ER stress. Because MANF is a neurotrophic factor, we also examined the effects of MANF deficiency on neurogenesis. We observed that MANF deficiency increased neurogenesis in the subgranular zone of the hippocampal dentate gyrus and subventricular zone of the lateral ventricles in the mouse brain. Mechanistically, this finding was supported by a decrease of cell cycle inhibitors (p15 and p27), an increase of G2/M marker (phospho-histone H3), and an increase of neural progenitor markers (Sox2 and NeuroD1) in the brain of conditional Manf knockout mice. Our in vitro studies demonstrated that the gain-of-function of MANF inhibited cell cycle progression, whereas the loss-of-function of MANF promoted cell cycle progression. Taken together, these data suggest that MANF may affect the process of neurogenesis through altering cell cycle progression.
55

THE ROLE OF NADPH OXIDASE 2 IN AXON GUIDANCE DURING ZEBRAFISH VISUAL SYSTEM DEVELOPMENT

Aslihan Terzi (9188978) 04 August 2020 (has links)
<p>Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionarily conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate a variety of biological processes including stem cell proliferation and differentiation, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. There is now emerging evidence that Nox-derived ROS also control neuronal development and pathfinding. Our lab has recently shown that retinal ganglion cells (RGCs) from <i>nox2</i> mutant zebrafish exhibit pathfinding errors. However, whether Nox could act downstream of receptors for axonal growth and guidance cues is presently unknown. To investigate this question, we conducted a detailed characterization of the zebrafish <i>nox2</i> mutants that were previously established in our group. Abnormal axon projections were found throughout the CNS of the <i>nox2 </i>mutant zebrafish. Anterior commissural axons failed proper fasciculation, and aberrant axon projections were detected in the dorsal longitudinal fascicle of the spinal cord. We showed that the major brain regions are intact and that the early development of CNS is not significantly altered in <i>nox2 </i>mutants. Hence, the axonal deficits in <i>nox2</i> mutants are not due to general developmental problems, and Nox2 plays a role in axonal pathfinding and targeting. Next, we investigated whether Nox2 could act downstream of slit2/Robo2-mediated guidance during RGC pathfinding. We found that slit2-mediated RGC growth cone collapse was abolished in <i>nox2 </i>mutants <i>in vitro</i>. Further, ROS biosensor imaging showed that slit2 treatment increased growth cone hydrogen peroxide levels via mechanisms through Nox2 activation. Finally, we investigated the possible relationship between slit2/Robo2 and Nox2 signaling <i>in vivo</i>. <i>Astray/nox2</i> double heterozygous mutant larvae exhibited decreased tectal area as opposed to individual heterozygous mutants, suggesting both Nox2 and Robo2 are required for the establishment of retinotectal connections. Our results suggest that Nox2 is part of a signal transduction pathway downstream of slit2/Robo2 interaction regulating axonal guidance cell-autonomously in developing zebrafish retinal neurons.</p>
56

Constructing and Maintaining the Nervous System: Molecular Insights Underlying Neuronal Architecture, Synaptic Development, and Synaptic Maintenance Using C. elegans

Oliver, Devyn 12 March 2021 (has links)
In the nervous system, billions of neurons undergo a multistep process to establish functional circuits. This entails accurate extension of dendritic and axonal processes and coordinated efforts of pre- and postsynaptic neurons to form synaptic connections. Although many axon guidance molecules and synaptic organizers have been identified, the molecular redundancy and the vast number of synapses in the brain has complicated attempts to define their precise roles. In order to understand the molecular mechanisms that encompass these processes, my studies utilize the genetic strengths and cellular precision available in Caenorhabditis elegans for in vivo investigations of nervous system development. In this work, I unravel cell-specific requirements for the transmembrane receptor integrin in regulating developmental axon guidance of GABAergic motor neurons. Furthermore, I address important questions about mechanisms of synapse formation and maintenance using a novel dendritic spine model in C. elegans. Using high resolution microscopy, I find that the formation of immature presynaptic vesicles and postsynaptic receptors are established prior to the outgrowth of dendritic spines at nascent synapses. During this early period of synapse formation, the kinesin-3 family protein UNC-104/KIF1A transports a transsynaptic adhesion molecule neurexin/NRX-1 to developing active zones, in order to maintain postsynaptic receptors and dendritic spines in the mature circuit. In the absence of nrx-1, spines initially form normally but collapse following their extension. These findings demonstrate that presynaptic NRX-1 is required to maintain postsynaptic structures. Together my work provides new insights into molecular mechanisms that define spatiotemporal characteristics of nervous system development and the maintenance of connectivity.
57

TIR-1/SARM1 Inhibits Axon Regeneration

Julian, Victoria L. 01 September 2021 (has links)
The inability to repair axonal damage is a feature of neurological impairment after injury and in neurodegenerative diseases. Axonal repair after injury depends in part on intrinsic factors. Several genes cell-autonomously regulate both axon regeneration and degeneration in response to injury. Recently, Sarm1 has emerged as a key regulator of neurodegeneration. Whether Sarm1 plays a role in axon regeneration is unknown. In this thesis, I identified a role for the C. elegans homolog of Sarm1, tir-1, as a negative regulator of axon regeneration. Investigating the genes which regulate axon regeneration and degeneration has been hindered by technical difficulties in visualizing and manipulating both of these processes in vivo simultaneously. To circumvent this challenge, I developed a new model of axon injury, where both axon regeneration and degeneration can be monitored in vivo with single neuron resolution in C. elegans. I found that the C. elegans homolog of Sarm1, tir-1, strongly inhibits axon regeneration in response to injury. I found that TIR-1 functions cell-intrinsically and that its subcellular localization is dynamically regulated in response to injury. To regulate both axon regeneration and degeneration after injury, I found that TIR-1 function is determined by interaction with two distinct genetic pathways. Together, this work reveals a novel role for tir-1/Sarm1 in axon regeneration, increases our understanding of the injury response, provides new avenues of investigation for studies of TIR-1/SARM1, and inspires candidate approaches to repair the injured nervous system.
58

Vitamin D and its in vitro therapeutic action mediated through VDR rather than PDIA3

Pyburn, Jaeden 01 May 2022 (has links)
Brain calcification is a common occurrence in the aging process, with >20% of individuals over the age of 65 showing hardened plaques in the basal ganglia. Loss of the vitamin D receptor (VDR) in transgenic mice leads to formation of calcified plaques in the basal ganglia and thalamus within the mice. Vitamin D signals through two known vitamin D responsive proteins, protein disulfide isomerase A3 (PDIA3) and VDR. In vitro, vitamin D has been demonstrated to suppress calcification in osteoblast-like cells. Here, we aim to elucidate which of either PDIA3 or VDR transduce vitamin D mediated suppression of calcification in vitro. PDIA3 or VDR were selectively knocked out in human osteosarcoma (SaOs) cells using CRISPR-Cas9 technology to generate PDIA3 KO or VDR KO cells. Knockout for PDIA3 or VDR was confirmed by RT-qPCR assay or western blot analysis. The calcification of SaOs-2 cells was induced with treatment of β-glycerophosphate along with ascorbic acid allowing for determination of whether loss of PDIA3 or VDR would lead to altered calcium deposition. Cells null for PDIA3 but not VDR grew at a significantly slower rate than wild-type (WT) cells. Intriguingly, PDIA3 and VDR KO cells displayed significantly more calcification relative to WT control cells. Calcitriol or the synthetic analogue EB1089 suppressed calcification in vitro in WT and PDIA3 KO but not VDR KO cells as measured by alizarin red staining. These data suggest VDR is critical for mediating vitamin D’s inhibition of calcification in vitro, and that PDIA3 has a role in suppressing calcification. This study provides novel insights into vitamin D signaling and provides a foundation for further study and understanding of vitamin D related pathologies.
59

Temporal Organization of Behavioral States through Local Neuromodulation in C. elegans

Banerjee, Navonil 14 December 2016 (has links)
Neuropeptide signaling play critical roles in maintaining distinct behavioral states and orchestrating transitions between them. However, elucidating the mechanisms underlying neuropeptide modulation of neural circuits in vivo remains a major challenge. The nematode Caenorhabditis elegans serves as an excellent model organism to study neuropeptide signaling mechanisms encoded in relatively simple neural circuits. We have used the C. elegans egg-laying circuit as a model to understand how neuropeptide signaling modifies circuit activity to generate opposing behavioral outcomes. C. elegans egg-laying behavior is composed of alternating cycles of two states – short bursts of egg deposition (active phases) and prolonged periods of quiescence (inactive phases). We have identified two neuropeptides (NLP-7 and FLP-11) that are locally released from a group of neurosecretory cells (uv1) and coordinate the temporal organization of egglaying by prolonging the duration of inactive phases. These neuropeptides regulate activity within the core circuit by inhibiting serotonergic transmission between its individual components (HSN motorneurons and Vm2 vulval muscles). This inhibition is achieved at least in part, by reducing synaptic vesicle abundance in the HSN synaptic regions. To identify potential downstream signaling components that mediate the actions of these neuropeptides, we have performed a forward genetic screen and have identified a strong candidate. In addition, we are trying to identify the receptor(s) of these neuropeptides by using a candidate gene approach. Together, we demonstrate that local neuropeptide signaling maintains the periodicity of distinct behavioral states by regulating serotonergic transmission in the core neural circuit.
60

Regulation of Local Translation, Synaptic Plasticity, and Cognitive Function by CNOT7

McFleder, Rhonda L. 31 July 2017 (has links)
Local translation of mRNAs in dendrites is vital for synaptic plasticity and learning and memory. Tight regulation of this translation is key to preventing neurological disorders resulting from aberrant local translation. Here we find that CNOT7, the major deadenylase in eukaryotic cells, takes on the distinct role of regulating local translation in the hippocampus. Depletion of CNOT7 from cultured neurons affects the poly(A) state, localization, and translation of dendritic mRNAs while having little effect on the global neuronal mRNA population. Following synaptic activity, CNOT7 is rapidly degraded resulting in polyadenylation and a change in the localization of its target mRNAs. We find that this degradation of CNOT7 is essential for synaptic plasticity to occur as keeping CNOT7 levels high prevents these changes. This regulation of dendritic mRNAs by CNOT7 is necessary for normal neuronal function in vivo, as depletion of CNOT7 also disrupts learning and memory in mice. We utilized deep sequencing to identify the neuronal mRNAs whose poly(A) state is governed by CNOT7. Interestingly these mRNAs can be separated into two distinct populations: ones that gain a poly(A) tail following CNOT7 depletion and ones that surprisingly lose their poly(A) tail following CNOT7 depletion. These two populations are also distinct based on the lengths of their 3’ UTRs and their codon usage, suggesting that these key features may dictate how CNOT7 acts on its target mRNAs. This work reveals a central role for CNOT7 in the hippocampus where it governs local translation and higher cognitive function.

Page generated in 0.0857 seconds