• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 3
  • 3
  • Tagged with
  • 23
  • 11
  • 10
  • 6
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Anorganische Salzhydratschmelzen

Fischer, Steffen 13 July 2009 (has links) (PDF)
Im Rahmen der Untersuchungen konnten zunächst Salzhydrate bezüglich ihrer Reaktionsfähigkeit auf Cellulose klassifiziert werden. Dabei kann die Reaktion zwischen Cellulose und der Salzschmelze zu einer Verteilung, Zersetzung, Quellung oder zur Lösung des Polymers führen. Unter einer Vielzahl von neuen Quellungs- und Lösemitteln, welche als Resultat der Untersuchungen vorliegen und die zur Verfügung stehenden Systeme erheblich erweitern, sind die kongruent schmelzenden Salzhydrate LiClO4·3H2O und Cu(ClO4)2·6H2O hervorzuheben. Diese Systeme sind in der Lage, Cellulose ohne Aktivierung faserfrei innerhalb kurzer Zeit zu lösen. Für die Lösefähigkeit einer Schmelze sind die spezifischen Koordinationsverhältnisse in der Hydratschmelze, der Wasseranteil sowie die Acidität von Bedeutung. Der Lösungszustand von Cellulose in einer Salzhydratschmelze wurde mit Hilfe der Lichtstreuung untersucht. Cellulose ist in den Schmelzen LiClO4·3H2O und ZnCl2+4H2O in aggregierter Form gelöst. Die Lösungsstrukturen von Cellulose in dem aciden LiClO4·3H2O und dem basischen NMMNO·MH sind vergleichbar. Unter Verwendung der 13C-NMR Spektroskopie konnte der chemische Zustand von Cellulose in Salzhydratschmelzen näher beschrieben werden. Im gelösten Zustand liegt keine partielle Substitution an den Hydroxylgruppen vor, die Hydratschmelzen können in die Gruppe der nichtderivatisierenden Lösemittel für Cellulose eingeordnet werden. Die 7Li-1H HOESY NMR Spektroskopie erbrachte den Beweis für eine direkte Wechselwirkung zwischen Cellulose und den Lithiumkationen, wobei die Hydroxylgruppen an C-2 und C-3 bevorzugt am Kation koordinieren, die an C-6 gebundene Hydroxylgruppe ist nicht in die Wechselwirkung einbezogen. Im gelösten Zustand befindet sich Cellulose in den Hydratschmelzen in einem amorphen Zustand, wobei die Wasserstoffbrücken aufgespalten sind. Aus dem amorphen Zustand im Salzhydrat erfolgt die Regeneration von Cellulose II durch Entfernen des Salzes. Die regenerierte Cellulose zeigt charakteristische strukturelle Veränderungen in Abhängigkeit vom verwendeten Salzhydrat. In Folge des Lösevorgangs kann eine Verringerung der Molmasse festgestellt werden, welche zum einen durch die Hydratschmelze bestimmt wird, zum anderen durch die Lösezeit, die Temperatur sowie die Molmasse der eingesetzten Cellulose. Die Morphologie von regenerierter Cellulose, welche durch die Anordnung der Cellulosefibrillen bestimmt ist, kann unter Verwendung verschiedener Salzhydrate sowie in Abhängigkeit des verwendeten Abkühlregimes in weiten Grenzen eingestellt werden. Neben der Applikation für Löse- und Regenerationsprozesse von Cellulose sind Salzhydratschmelzen auch als effektive Reaktionsmedien zur chemischen Modifizierung einsetzbar, was für eine Veretherung sowie Veresterung gezeigt werden konnte. Die Synthese von Carboxymethylcellulose kann sowohl in einer lösenden als auch in einer quellenden Hydratschmelze erfolgen. Die Produkte zeichnen sich durch hohe Substitutionsgrade sowie einer statistischen Verteilung entlang der Polymerkette aus. Die Veresterung unter Bildung von Celluloseacetat kann in Thiocyanatschmelzen durchgeführt werden. Der erreichte Substitutionsgrad wird durch die molaren Verhältnisse bei der Reaktion sowie durch die Reaktionszeit bestimmt. Salzhydratschmelzen sind geeignet, synthetische Polymere zu lösen. In der Thiocyanat-schmelze sind Polymermischungen von Cellulose und Polyacrylnitril hergestellt worden. Die Struktur und die Eigenschaften der erhaltenen Polymerblends sind mit TMDSC sowie FT-Ramanspektroskopie untersucht worden. Sowohl der Gang der Glasübergangstemperaturen als auch die Intensitätsverhältnisse im Ramanspektrum zeigen eine Wechselwirkung bis zur molekularen Ebene an.
12

Strukturuntersuchungen an Cellulose und Cellulosederivaten aus ionischen Lösemitteln

Peters, Jana 13 July 2009 (has links) (PDF)
In den vergangenen Jahren wurden anorganische Salzhydratschmelzen und Ionic Liquids als neuartige Reaktions- und Lösemedien für Cellulose etabliert. Ausgangspunkt für die vorliegende Arbeit zum Lösungszustand von Cellulose in Salzschmelzen war, ein Verständnis für die strukturelle Veränderung beim Auflösen von Cellulose in diesen Solventien zu entwickeln, sowie einen Zusammenhang zwischen der Cellulosestruktur in Lösung und der im Regenerat herzustellen. Auf der Grundlage NMR-spektroskopischer Untersuchungen wurde eine direkte Wechselwirkung zwischen bevorzugten Hydroxylgruppen der Cellulose und den Lithiumkationen der Salzhydratschmelze LiCl∙5D2O nachgewiesen und eine konkrete Lösungsstruktur vorgeschlagen. Unter Verwendung von schwingungsspektroskopischen Methoden und der 13C-CP/MAS-NMR wird die Struktur der Cellulose im festen Salzhydrat als amorph charakterisiert. NMR-Untersuchungen an unkonventionell synthetisierten Cellulosederivaten liefern neue Erkenntnisse zu deren Ordnungsgrad und Substitutionsmuster.
13

Entwicklung schmelzextrudierter Arzneiformen auf Basis von Ether- und Ester-Derivaten der Cellulose /

Ecker, Felix F. January 2001 (has links)
Thesis (doctoral)--Universität, Köln, 2001.
14

Cellulosederivate mit lateralen Übergangsmetall-Chelatkomplexen Synthese und Eigenschaften in verdünnter Lösung /

Laube, Bettina. January 2002 (has links) (PDF)
Darmstadt, Techn. Univ., Diss., 2002.
15

Polymeranaloge Carbanilierung von Cellulose Beiträge zur Methodenentwicklung und Untersuchung von Depolymerisationsprozessen /

Fischer, Martin. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Dresden.
16

Einsatz von cellulose- und stärkehaltigen Naturstoffen zur Abwasserreinigung

Scope, Andreas 25 November 2009 (has links) (PDF)
Es wurde die sorptive Bindung von in Wasser gelösten Schadstoffen an der Oberfläche von cellulose- und stärkehaltigen Naturstoffen untersucht. In einem umfangreichen Screening wurde die Aufnahme von Schwermetallionen durch Ionenaustausch sowie von organischen Verbindungen durch Adsorption nachgewiesen. Die mathematische Beschreibung der Sorptionsvorgänge erfolgte durch Langmuir- und Freundlich-Isothermen. Durch chemische Modifikationen der Cellulosematrix wurde eine weitere Steigerung der Sorptionskapazitäten angestrebt. Der Einbau von phosphorhaltigen funktionellen Gruppen in verschiedene cellulosebasierte Naturstoffe erbrachte eine deutliche Erhöhung der Schwermetallbeladungen. Die Praxistauglichkeit der Sorbentien wurde in Durchbruchsversuchen mit synthetischen und realen Abwässern nachgewiesen, wobei sowohl native als auch chemisch modifizierte Stoffe einzeln und in Kombinationen zum Einsatz kamen.
17

Synthese und Charakterisierung neuartiger Cellulosederivate und deren Einsatz als Verkapselungsmaterialien

Rohowsky, Juta 24 July 2017 (has links) (PDF)
Neuartige Cellulosederivate werden ausgehend von kommerziellen Celluloseethern synthetisiert. Aufgrund der guten Löslichkeit der Celluloseether in polaren Lösungsmitteln erfolgt eine homogene Reaktionsführung, wodurch eine regelmäßige Verteilung der Sulfatgruppen entlang der Polymerkette gewährleistet wird. Durch Variation der Reaktionsparameter wie Sulfatierungsmittel, Lösungsmittel, Reaktionszeit und -temperatur erfolgte die Synthese zahlreicher Celluloseethersulfate mit unterschiedlichen Eigenschaften bezüglich Sulfatierungsgrad und kinematischer Viskosität. Durch Bestimmung des Schwefelgehaltes und entsprechender Berechnungen konnten die Anzahl der Sulfatgruppen im Molekül (DSSul) ermittelt werden, wobei die Werte für die synthetisierten Proben im Bereich zwischen DSSul = 0.1 bis DSSul = 2.7 lagen. Der Abbau der Polymerkette wurde ebenfalls durch die Reaktionsbedingungen gesteuert, sodass sowohl Produkte mit hohen (1698 mm2/s) als auch sehr niedrigen (2 mm2/s) kinemtischen Viskositäten resultierten. Wasserlöslichkeit der Produkte wurde durch Trübungsmessungen von 1%igen wässrige Lösungen und der daraus erhaltenen geringen Trübungswerte (NTU < 10) ermittelt. Die Funktionalisierung der Celluloseether mit Sulfatgruppen konnte mittels spektroskopischer Methoden nachgewiesen werden. In 13C-NMR-Spektren von Hydroxypropylcellulosesulfaten wurden zusammen-hängende strukturelle Veränderungen mit dem Anstieg des DSSul der Produkte korreliert. Durch charakteristische Signale im Bereich der Ether-Kohlenstoffatome und deren Verschiebung wurde belegt, dass die Sulfatierung des Celluloseethers an den freien Hydroxylgruppen der Etherseitenkette erfolgte. Mittels FT-RAMAN-Spektroskopie konnten für Sulfatgruppen charakteristische Banden der in den Spektren der sulfatierten Celluloseether nachgewiesen und zugeordnet werden. Aufgrund der ionischen Sulfatgruppen dissoziieren die Celluloseethersulfate in Wasser in geladene Polymerketten. Dadurch ist in Gegenwart von kationischen Polyelektrolyten (polyDADMAC) die Bildung von Polyelektrolytkomplexen in Form von Kapseln und Folien/Membranen möglich. Die Fähigkeit solcher Polyelektrolytkapseln aus Celluloseethersulat und polyDADMAC zu Verkapselung von Substanzen und deren anschließende Freisetzung wurde am Beispiel der Verkapselung des Fluoreszenzfarbstoffes Rhodamin B gezeigt. Mittels fluoreszenzspektroskopischer Messungen konnte der aus den Kapseln freiwerdende Farbstoff detektiert werden. Anhand der Messungen wurde gezeigt, dass die Farbstofffreigabe im Fall von Rhodamin B abhängig von den Probeneigenschaften ist. Durch die Wahl des Ausgangsstoffes und deren Funktionalisierung mit Sulfatgruppen kann die Farbstofffreisetzung gesteuert werden. Mit zunehmendem DSSul des Celluloseethersulfates verlängert sich die Verweilzeit des Fluoreszenz-farbstoffes in der Kapsel. Zusätzliche Funktionelle Gruppen in der Seitenkette des Ausgangsstoffes führen zu sterischen Hinderung bei der Wechselwirkung mit polyDADMAC, wodurch eine gegenseitige Durchdringung der Polymerketten bei der Ausbildung des Polyelektrolytkomplexes gehindert wird, sodass weniger kompakte Membranstrukturen der Kapseln resultieren. In Zellexperimente mit adhärenten Zelllinien an entsprechenden mit Celluloseethersulfat präpartierten Oberflächen wurde gezeigt, dass die Zelladhäsion durch den Sulfatierungsgrad der Proben beeinflusst wird. Auf Proben mit höherem Sulfatierungsgrad findet eine verbesserte Adhäsion im Vergleich zu Proben statt, die einen geringen Sulfatierungsgrad aufweisen. Demnach wird die Kompatibilität der Zellen auf solche Oberflächen durch die Erhöhung des Substitutionsgrades der Proben begünstigt.
18

Synthese und Charakterisierung neuartiger Cellulosederivate und deren Einsatz als Verkapselungsmaterialien

Rohowsky, Juta 11 March 2015 (has links)
Neuartige Cellulosederivate werden ausgehend von kommerziellen Celluloseethern synthetisiert. Aufgrund der guten Löslichkeit der Celluloseether in polaren Lösungsmitteln erfolgt eine homogene Reaktionsführung, wodurch eine regelmäßige Verteilung der Sulfatgruppen entlang der Polymerkette gewährleistet wird. Durch Variation der Reaktionsparameter wie Sulfatierungsmittel, Lösungsmittel, Reaktionszeit und -temperatur erfolgte die Synthese zahlreicher Celluloseethersulfate mit unterschiedlichen Eigenschaften bezüglich Sulfatierungsgrad und kinematischer Viskosität. Durch Bestimmung des Schwefelgehaltes und entsprechender Berechnungen konnten die Anzahl der Sulfatgruppen im Molekül (DSSul) ermittelt werden, wobei die Werte für die synthetisierten Proben im Bereich zwischen DSSul = 0.1 bis DSSul = 2.7 lagen. Der Abbau der Polymerkette wurde ebenfalls durch die Reaktionsbedingungen gesteuert, sodass sowohl Produkte mit hohen (1698 mm2/s) als auch sehr niedrigen (2 mm2/s) kinemtischen Viskositäten resultierten. Wasserlöslichkeit der Produkte wurde durch Trübungsmessungen von 1%igen wässrige Lösungen und der daraus erhaltenen geringen Trübungswerte (NTU < 10) ermittelt. Die Funktionalisierung der Celluloseether mit Sulfatgruppen konnte mittels spektroskopischer Methoden nachgewiesen werden. In 13C-NMR-Spektren von Hydroxypropylcellulosesulfaten wurden zusammen-hängende strukturelle Veränderungen mit dem Anstieg des DSSul der Produkte korreliert. Durch charakteristische Signale im Bereich der Ether-Kohlenstoffatome und deren Verschiebung wurde belegt, dass die Sulfatierung des Celluloseethers an den freien Hydroxylgruppen der Etherseitenkette erfolgte. Mittels FT-RAMAN-Spektroskopie konnten für Sulfatgruppen charakteristische Banden der in den Spektren der sulfatierten Celluloseether nachgewiesen und zugeordnet werden. Aufgrund der ionischen Sulfatgruppen dissoziieren die Celluloseethersulfate in Wasser in geladene Polymerketten. Dadurch ist in Gegenwart von kationischen Polyelektrolyten (polyDADMAC) die Bildung von Polyelektrolytkomplexen in Form von Kapseln und Folien/Membranen möglich. Die Fähigkeit solcher Polyelektrolytkapseln aus Celluloseethersulat und polyDADMAC zu Verkapselung von Substanzen und deren anschließende Freisetzung wurde am Beispiel der Verkapselung des Fluoreszenzfarbstoffes Rhodamin B gezeigt. Mittels fluoreszenzspektroskopischer Messungen konnte der aus den Kapseln freiwerdende Farbstoff detektiert werden. Anhand der Messungen wurde gezeigt, dass die Farbstofffreigabe im Fall von Rhodamin B abhängig von den Probeneigenschaften ist. Durch die Wahl des Ausgangsstoffes und deren Funktionalisierung mit Sulfatgruppen kann die Farbstofffreisetzung gesteuert werden. Mit zunehmendem DSSul des Celluloseethersulfates verlängert sich die Verweilzeit des Fluoreszenz-farbstoffes in der Kapsel. Zusätzliche Funktionelle Gruppen in der Seitenkette des Ausgangsstoffes führen zu sterischen Hinderung bei der Wechselwirkung mit polyDADMAC, wodurch eine gegenseitige Durchdringung der Polymerketten bei der Ausbildung des Polyelektrolytkomplexes gehindert wird, sodass weniger kompakte Membranstrukturen der Kapseln resultieren. In Zellexperimente mit adhärenten Zelllinien an entsprechenden mit Celluloseethersulfat präpartierten Oberflächen wurde gezeigt, dass die Zelladhäsion durch den Sulfatierungsgrad der Proben beeinflusst wird. Auf Proben mit höherem Sulfatierungsgrad findet eine verbesserte Adhäsion im Vergleich zu Proben statt, die einen geringen Sulfatierungsgrad aufweisen. Demnach wird die Kompatibilität der Zellen auf solche Oberflächen durch die Erhöhung des Substitutionsgrades der Proben begünstigt.
19

Untersuchungen zur Herstellung und Charakterisierung von Kohlenstoffmembranen auf der Basis von Cellulose und Cellulosederivaten

Pötzschke, Jörg 30 June 2003 (has links)
Es wurden neue unkonventionelle Wege zur Herstellung kostengünstiger Kohlenstoffkompositmembranen untersucht, welche in Spezialgebieten der Membrantechnik zur Filtration aggressiver Flüssigmedien hätten eingesetzt werden können. Als Ausgangsmaterialien kamen sowohl für den Trägerkörper und die Zwischenschicht als auch für die Trennschicht Cellulose bzw. cellulosehaltige Materialien zum Einsatz, deren Kohlenstoffausbeuten durch thermogravimetrische Analyse (TGA) bestimmt wurden. Zum Zwecke der Trennschichtpräparation wurden diese in geeigneten organischen Lösungsmitteln gelöst. Darüber hinaus wurden erstmals anorganische Salzhydratschmelzen sowie wäßrige Salz-Wasser-Systeme zum Aktivieren, Lösen oder Suspendieren der Cellulose eingesetzt. Das Aufbringen der Celluloselösungen auf dem Trägerkörper erfolgte durch Tauchen, Sprühen, Rakeln und Infiltration. Zur Charakterisierung der erhaltenen Membranen kamen vor allem die Raseterelektronenmikroskopie (REM) gekoppelt mit EDX und die Kapillarfluß-Porosimetrie (CFP) zum Einsatz.
20

Anorganische Salzhydratschmelzen: ein unkonventionelles Löse-und Reaktionsmedium für Cellulose

Fischer, Steffen 24 October 2003 (has links)
Im Rahmen der Untersuchungen konnten zunächst Salzhydrate bezüglich ihrer Reaktionsfähigkeit auf Cellulose klassifiziert werden. Dabei kann die Reaktion zwischen Cellulose und der Salzschmelze zu einer Verteilung, Zersetzung, Quellung oder zur Lösung des Polymers führen. Unter einer Vielzahl von neuen Quellungs- und Lösemitteln, welche als Resultat der Untersuchungen vorliegen und die zur Verfügung stehenden Systeme erheblich erweitern, sind die kongruent schmelzenden Salzhydrate LiClO4·3H2O und Cu(ClO4)2·6H2O hervorzuheben. Diese Systeme sind in der Lage, Cellulose ohne Aktivierung faserfrei innerhalb kurzer Zeit zu lösen. Für die Lösefähigkeit einer Schmelze sind die spezifischen Koordinationsverhältnisse in der Hydratschmelze, der Wasseranteil sowie die Acidität von Bedeutung. Der Lösungszustand von Cellulose in einer Salzhydratschmelze wurde mit Hilfe der Lichtstreuung untersucht. Cellulose ist in den Schmelzen LiClO4·3H2O und ZnCl2+4H2O in aggregierter Form gelöst. Die Lösungsstrukturen von Cellulose in dem aciden LiClO4·3H2O und dem basischen NMMNO·MH sind vergleichbar. Unter Verwendung der 13C-NMR Spektroskopie konnte der chemische Zustand von Cellulose in Salzhydratschmelzen näher beschrieben werden. Im gelösten Zustand liegt keine partielle Substitution an den Hydroxylgruppen vor, die Hydratschmelzen können in die Gruppe der nichtderivatisierenden Lösemittel für Cellulose eingeordnet werden. Die 7Li-1H HOESY NMR Spektroskopie erbrachte den Beweis für eine direkte Wechselwirkung zwischen Cellulose und den Lithiumkationen, wobei die Hydroxylgruppen an C-2 und C-3 bevorzugt am Kation koordinieren, die an C-6 gebundene Hydroxylgruppe ist nicht in die Wechselwirkung einbezogen. Im gelösten Zustand befindet sich Cellulose in den Hydratschmelzen in einem amorphen Zustand, wobei die Wasserstoffbrücken aufgespalten sind. Aus dem amorphen Zustand im Salzhydrat erfolgt die Regeneration von Cellulose II durch Entfernen des Salzes. Die regenerierte Cellulose zeigt charakteristische strukturelle Veränderungen in Abhängigkeit vom verwendeten Salzhydrat. In Folge des Lösevorgangs kann eine Verringerung der Molmasse festgestellt werden, welche zum einen durch die Hydratschmelze bestimmt wird, zum anderen durch die Lösezeit, die Temperatur sowie die Molmasse der eingesetzten Cellulose. Die Morphologie von regenerierter Cellulose, welche durch die Anordnung der Cellulosefibrillen bestimmt ist, kann unter Verwendung verschiedener Salzhydrate sowie in Abhängigkeit des verwendeten Abkühlregimes in weiten Grenzen eingestellt werden. Neben der Applikation für Löse- und Regenerationsprozesse von Cellulose sind Salzhydratschmelzen auch als effektive Reaktionsmedien zur chemischen Modifizierung einsetzbar, was für eine Veretherung sowie Veresterung gezeigt werden konnte. Die Synthese von Carboxymethylcellulose kann sowohl in einer lösenden als auch in einer quellenden Hydratschmelze erfolgen. Die Produkte zeichnen sich durch hohe Substitutionsgrade sowie einer statistischen Verteilung entlang der Polymerkette aus. Die Veresterung unter Bildung von Celluloseacetat kann in Thiocyanatschmelzen durchgeführt werden. Der erreichte Substitutionsgrad wird durch die molaren Verhältnisse bei der Reaktion sowie durch die Reaktionszeit bestimmt. Salzhydratschmelzen sind geeignet, synthetische Polymere zu lösen. In der Thiocyanat-schmelze sind Polymermischungen von Cellulose und Polyacrylnitril hergestellt worden. Die Struktur und die Eigenschaften der erhaltenen Polymerblends sind mit TMDSC sowie FT-Ramanspektroskopie untersucht worden. Sowohl der Gang der Glasübergangstemperaturen als auch die Intensitätsverhältnisse im Ramanspektrum zeigen eine Wechselwirkung bis zur molekularen Ebene an.

Page generated in 0.3968 seconds