Spelling suggestions: "subject:"cellobiose.""
1 |
Biomass conversion : cellobiose and methylcellobiose conversionSoares, Helena Sofia Marques Pinto January 2009 (has links)
Tese de mestrado integrado. Engenharia Química. Faculdade de Engenharia. Universidade do Porto, Delft University of Technology. 2009
|
2 |
Análise do gene codificante da enzima Beta-Glucosidase na Levedura Dekkera bruxellensisTorres, Rochane Regina Neves Baptista 31 January 2012 (has links)
Submitted by Luiz Felipe Barbosa (luiz.fbabreu2@ufpe.br) on 2015-03-13T13:17:33Z
No. of bitstreams: 2
Dissertação Biblioteca.pdf: 708752 bytes, checksum: df7cba1e43069bfc51896d1a153c8993 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-13T13:17:33Z (GMT). No. of bitstreams: 2
Dissertação Biblioteca.pdf: 708752 bytes, checksum: df7cba1e43069bfc51896d1a153c8993 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2012 / O bagaço da cana-de-açúcar é constituído por celulose, hemicelulose e lignina.
A celulose, quando hidrolisada, é transformada em celobiose que por sua vez
pode ser hidrolisada em duas moléculas de glicose. A enzima ß-glucosidase é
a proteína responsável pela hidrolise de celobiose em glicose. Entretanto, o
bagaço é, na maioria das vezes, queimado para a produção de energia elétrica
para ser utilizada no processo industrial não sendo utilizado para a produção
de etanol. Por ter um crescimento mais rápido do que a levedura
Saccharomyces cerevisiae em condições industriais de fermentação alcoólica
apresentando uma maior resistências a altas concentrações de etanol, altas
temperaturas e baixo pH têm feito da Dekkera bruxellensis alvo de pesquisas e
melhoramentos genéticos. O presente trabalho teve como objetivo identificar e
analisar in silico o gene codificante da ß-glucosidase no genoma da levedura D.
bruxellensis através das ferramentas de bioinformática. Os resultados
mostraram que a partir do alinhamento BLASTp, uma seqüência curta da
levedura D. bruxellensis apresentou similaridade com seqüências codificantes
para a enzima ß-glucosidase de espécies da divisão ascomiceto. A seqüência
da espécie Kluyveromyces marxianus obteve o maior percentual de
similaridade com a seqüência de D. bruxellensis. Foram identificados no
alinhamento múltiplo, através de conhecimento prévio da literatura, os resíduos
do sitio ativo da enzima ß-glucosidase presentes na seqüência de D.
bruxellensis mostrando ser sítios bastante conservados
|
3 |
Perfil fermentativo de uma linhagem de Dekkera bruxellensis van der Walt (1964) a partir de hidrolisados lignocelulósicos e suas implicações na produção de etanol de segunda geraçãoReis, Alexandre Libanio Silva 14 March 2014 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2015-05-14T12:49:33Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Reis ALS 2014 Tese.pdf: 4888258 bytes, checksum: 3f44c77658c5a103d9a2eb81eda3f642 (MD5) / Made available in DSpace on 2015-05-14T12:49:33Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Reis ALS 2014 Tese.pdf: 4888258 bytes, checksum: 3f44c77658c5a103d9a2eb81eda3f642 (MD5)
Previous issue date: 2014-03-14 / CNPq / Os maiores produtores de etanol no mundo são os Estados Unidos, a partir do amido de milho, e o Brasil, a partir da sacarose da cana-de-açúcar. Nos últimos anos, o Brasil não aumentou apreciavelmente a sua produção, enquanto que, por outro lado, a indústria de etanol nos Estados Unidos vem sofrendo uma grande expansão, em torno de 1 milhão m3/ano, com planejamento para produção de 40 milhões de m3 de etanol em 2025. Em atendimento a uma demanda que cresce significativamente em função do reconhecimento mundial dos benefícios do etanol como combustível, os Estados Unidos e o Brasil, assim como diversos outros países, entraram em uma corrida, que tende a se acirrar, para o desenvolvimento de tecnologias de produção de etanol a partir de materiais lignocelulósicos. Dekkera bruxellensis é uma levedura que é usualmente reconhecida como um organismo contaminante. A espécie, como todas as leveduras consideradas não-Saccharomyces, apresenta graus variados de mecanismos catalíticos de suas glicosidades e poucos estudos têm investigado o desempenho das enzimas produzidas por esses microrganismos. A presente Tese teve como objetivo principal observar e interpretar os parâmetros cinéticos e as características bioquímicas de β-glicosidase(s) e produzida(s) por D. bruxellensis, linhagem GDB 248 e relacionar esses parâmetros com o perfil fermentativo da mesma frente à conversão da celobiose, proveniente de meios sintéticos e de hidrolisados de bagaços de cana-de-açúcar e sorgo sacarino, em bioetanol, incluindo a ultra análise morfológica dessas biomassas lignocelulósicas, avaliando a eficiência do pré-tratamento utilizando peróxido de hidrogênio em meio alcalino e seus respectivos rendimentos em produtividade volumétrica e eficiência de fermentação da glicose e xilose em etanol. Para o primeiro trabalho “Fermentação da celobiose em condições de aerobiose restrita e a caracterização de uma celobiase a partir de uma linhagem industrial de Dekkera/Brettanomyces bruxellensis” foi confirmada a atividade celobiásica (β-glicosidase) em extratos semi-purificados caracterizando-a como uma enzima candidato. Foi demonstrado que a linhagem GDB 248 apresentou capacidade de produzir uma concentração de ácido acético maior que o etanol e glicerol, o que confirma a ausência de efeito Custer com esta estirpe em condições de aerobiose restrita. E no segundo trabalho “Produção de etanol de segunda geração a partir de bagaço de cana-de-açúcar e sorgo sacarino por uma linhagem industrial de Dekkera/Brettanomyces bruxellensis” foi possível obter altas eficiências de hidrólise enzimática utilizando apenas preparações comerciais de celulases, sem complementação com β-glicosidades, o que pode diminuir os custos de processo de hidrólise.
|
4 |
Análise do gene codificante da enzima Beta-Glucosidase na Levedura Dekkera bruxellensisTORRES, Rochane Regina Neves Baptista January 2012 (has links)
Submitted by Caroline Falcao (caroline.rfalcao@ufpe.br) on 2017-04-10T16:51:06Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
2012-Dissertação-RochaneTorres.pdf: 692913 bytes, checksum: 7cd4864091015b6ca287e445f2eb5c7a (MD5) / Made available in DSpace on 2017-04-10T16:51:06Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
2012-Dissertação-RochaneTorres.pdf: 692913 bytes, checksum: 7cd4864091015b6ca287e445f2eb5c7a (MD5)
Previous issue date: 2012 / O bagaço da cana-de-açúcar é constituído por celulose, hemicelulose e lignina. A celulose, quando hidrolisada, é transformada em celobiose que por sua vez pode ser hidrolisada em duas moléculas de glicose. A enzima ß-glucosidase é a proteína responsável pela hidrolise de celobiose em glicose. Entretanto, o bagaço é, na maioria das vezes, queimado para a produção de energia elétrica para ser utilizada no processo industrial não sendo utilizado para a produção de etanol. Por ter um crescimento mais rápido do que a levedura Saccharomyces cerevisiae em condições industriais de fermentação alcoólica apresentando uma maior resistências a altas concentrações de etanol, altas temperaturas e baixo pH têm feito da Dekkera bruxellensis alvo de pesquisas e melhoramentos genéticos. O presente trabalho teve como objetivo identificar e analisar in silico o gene codificante da ß-glucosidase no genoma da levedura D. bruxellensis através das ferramentas de bioinformática. Os resultados mostraram que a partir do alinhamento BLASTp, uma seqüência curta da levedura D. bruxellensis apresentou similaridade com seqüências codificantes para a enzima ß-glucosidase de espécies da divisão ascomiceto. A seqüência da espécie Kluyveromyces marxianus obteve o maior percentual de similaridade com a seqüência de D. bruxellensis. Foram identificados no alinhamento múltiplo, através de conhecimento prévio da literatura, os resíduos do sitio ativo da enzima ß-glucosidase presentes na seqüência de D. bruxellensis mostrando ser sítios bastante conservados. / Bagasse of cane sugar is composed of cellulose, hemicellulose and lignin. Cellulose, when hydrolyzed, is transformed into cellobiose which can be hydrolyzed to two glucose molecules. The enzyme ß-glucosidase is the protein responsible for the hydrolysis of cellobiose to glucose. However, the bagasse is, in most cases, burned to produce electricity to be used in the industrial process and it is not used for ethanol production. Due to have a faster growth than Saccharomyces cerevisiae yeast in industrial fermentation conditions and presenting a greater resistance to high concentrations of ethanol, low pH and high temperatures have made the Dekkera bruxellensis subject of research and genetic manipulations. This study aimed to identify and analyze in silico gene encoding ß-glucosidase in the D. bruxellensis yeast genome through the computational tools of bioinformatics. The results showed that in the blastp alignment, a short sequence of D. bruxellensis yeast showed similarity with sequences coding for the ß-glucosidase enzyme in the ascomycete division species. The Kluyveromyces marxianus sequence had the highest percentage in similarity with D. bruxellensis sequence. The multiple alignment tool was able to identify, using prior knowledge of the literature, the active site residues of the ß-glucosidase enzyme in the sequence of D. bruxellensis. Sites showed to be very conserved.
|
5 |
Expressão heteróloga, caracterização bioquímica e avaliação da suplementação da enzima oxidativa Celobiose Desidrogenase na sacarificação da biomassa / Heterologous production, biochemical characterization and evaluation of oxidative enzyme Cellobiose Dehydrogenase in saccharification of biomassOliva, Bianca 20 February 2019 (has links)
A produção de biocombustíveis e a obtenção de alguns compostos químicos a partir de materiais renováveis, como a biomassa lignocelulósica, ainda não são processos triviais, principalmente devido a recalcitrância destes materiais. Estudos recentes reconheceram as enzimas acessórias, como xilanases e enzimas com Atividade Auxiliar, como potencializadores da atividade de celulases no processo de despolimerização da lignocelulose. A prospecção de enzimas com características termoestáveis é vantajosa para este tipo de aplicação e além disso, estudos sobre o secretoma de diversos fungos cultivados em biomassa como fonte de carbono, tem encontrado enzimas com mecanismo oxidativo, dentre eles, o fungo termofílico Myceliophthora thermophila M77. Porém, estas enzimas tem sido pouco estudadas quanto a sua aplicação na sacarificação da biomassa. Sendo assim, este trabalho visou a expressão heteróloga, a caracterização bioquímica e a ação da enzima oxidativa celobiose desidrogenase do fungo M. thermophila (M77CDH) em conjunto com outras celulases no processo de sacarificação da biomassa. Pela análise filogenética a M77CDH prospectada foi classificada como pertencente a Classe IIB das CDHs. O gene que codifica esta enzima foi clonado no vetor pEXPYR e heterólogamente expresso em A. nidulans. A proteína recombinante M77CDH foi purificada e teve sua identidade confirmada por espectrometria de massas. Nas análises bioquímicas, apresentou atividade ótima a 65 °C e reteve mais de 80% da sua atividade a 50°C por 2 horas e pela análise de dicroísmo circular apresentou um desenovelamento da sua estrutura na temperatura de transição de 62,8 °C. Apresentou mais de 80% de atividade em uma faixa ampla de pH (4,5 - 9), em que o domínio citocromo mostrou maior afinidade em pHs alcalinos, característica incomum entre as CDHs descritas na literatura. A atividade da M77CDH foi ligeiramente aumentada pela adição de MgCl2 e Na2MoO4 e altamente afetada por CuSO4 e FeCl3. A eficiência catalítica (kcat/km=266 mM-1s-1) utilizando celobiose foi bastante similar aos valores indicados por CDHs da Classe IIA. O envelope da M77CDH gerado por SAXS foi satisfatório e conveniente com a literatura. Na sacarificação de bagaço de cana pré-tratado hidrotermicamente, utilizando coquetel de A. niveus suplementado com M77CDH, foi possível observar que a adição de M77CDH modificou o perfil de produtos liberados na desconstrução da biomassa. Por fim, na sacarificação do PASC observou-se a sacarificação e produção de ácido celobiônico. / The production of biofuels and chemicals from renewable materials such as lignocellulosic biomass are non-trivial processes mainly due to the recalcitrance of the material. Recent studies have recognized accessory enzymes such as xylanases and Auxiliary Activity enzymes as potentiators in cellulase activity during the depolymerization of lignocellulose. The prospection of thermostable enzymes can be an advantage the improve the depolymerization of these materials. In addition, several enzymes showing oxidative mode of action were found in the secretoma of the thermophilic fungus Myceliophthora thermophila strain M77. However, these enzymes are poor studied regarding their application in biomass saccharification. Therefore, this project aimed the heterologous expression and biochemical characterization of the oxidative enzyme cellobiose dehydrogenase of the fungus M. thermophila (M77CDH). By phylogenetic analysis the M77CDH was classified as belonging to Class IIB of CDHs. The gene encoding this enzyme was cloned and heterologously expressed in A. nidulans, the M77CDH was purified and had its identity confirmed by mass spectrometry. In the biochemical analyzes the M77CDH showed an optimum activity at 65 °C and retained more than 80% of its activity at 50 °C for 2 hours. The circular dichroism analysis showed a denaturation of its structure at the transition temperature of 62.8 ° C. M77CDH also kept more than 80% of its activity in a wide pH range (4.5 - 9), in which the cytochrome domain showed higher affinity at alkaline pH, an unusual behavior compared with other CDHs described in the literature. The activity of M77CDH was increased slightly in the presence of MgCl2 and Na2MoO4 and was highly affected by CuSO4 and FeCl3. The catalytic efficiency (kcat/km = 266 mM-1s-1) in cellobiose was quite similar to the values indicated by CDHs from Class IIA. The envelope of M77CDH generated by SAXS was satisfactory and convenient with the literature. In saccharification of sugarcane bagasse hydrothermally pretreated using A. niveus cocktail supplemented with M77CDH was possible to observe the addition of M77CDH modified the profile of released products in the deconstruction of the biomass. Finally, in the action on PASC was observed the saccharification and production of cellobionic acid.
|
Page generated in 0.0276 seconds