• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influences of Test Conditions and Mixture Proportions on Property Values of Soil Treated with Cement to Represent the Wet Method of Deep Mixing

Nevarez Garibaldi, Roberto 19 September 2017 (has links)
A laboratory testing program was conducted on cement-treated soil mixtures fabricated to represent materials produced by the wet method of deep mixing. The testing program focused on investigating the influences that variations in laboratory testing conditions and in the mix design have on measured property values. A base soil was fabricated from commercially available soil components to produce a very soft lean clay that is relatively easy to mix and can be replicated for future research. The mix designs included a range of water-to-cement ratios of the slurries and a range of cement factors to produce a range of mixture consistencies and a range of unconfined compressive strengths after curing. Unconfined compressive strength (UCS) tests and unconsolidated-undrained (UU) triaxial compression tests were conducted. Secant modulus of elasticity were determined from bottom platen displacements, deformations between bottom platen and cross bar, and from LVDT's placed directly on the cement-treated soil specimens. Five end-face treatment methods were used for the specimens: sawing-and-hand-trimming, machine grinding, sulfur capping, neoprene pads, and gypsum capping. Key findings of this research include the following: (1) The end-face treatment method does not have a significant effect on the unconfined compressive strength and secant modulus; (2) a relationship of UCS with curing time, total-water-to-cement ratio, and dry density of the mixture; (3) the secant modulus determined by bottom platen displacements is significantly affected by slack and deformations in the load frame; (4) the secant modulus determined by local strain measurements was about 630 time the UCS; (5) typical values of Poisson's ratio range from about 0.05 to 0.25 for stress levels equal to half the UCS and about 0.15 to 0.35 at the UCS; (6) Confinement increased the strength at high strains from less than 20% the UCS to about 60% the UCS. In addition to testing the cured mixtures, the consistency of the mixtures were measured right after mixing using a laboratory miniature vane. A combination of the UCS relationship along with the mixture consistency may provide useful information for deep mixing contractors. / MS
2

Influence of Curing Temperature on Strength of Cement-treated Soil and Investigation of Optimum Mix Design for the Wet Method of Deep Mixing

Ju, Hwanik 15 January 2019 (has links)
The Deep Mixing Method (DMM) is a widely used, in-situ ground improvement technique that modifies and improves the engineering properties of soil by blending the soil with a cementitious binder. Laboratory specimens were prepared to represent soil improved by the wet method of deep mixing, in which the binder is delivered in the form of a cement-water slurry. To study the influence of curing temperature on the strength of the treated soil, specimens were cured in temperature-controlled water baths for the desired curing time. After curing, unconfined compressive strength (UCS) tests were conducted on the specimens. To investigate the optimum mix design for the wet method of deep mixing, UCS tests were performed to measure the strength of cured specimens, and laboratory miniature vane shear tests were conducted on uncured specimens to measure the undrained shear strength (su), which is used to represent the consistency of the mixture right after mixing. The consistency is important for field mixing because a softer mixture is easier to mix thoroughly. Based on the UCS test results, an equation that can provide a good fit to the strength data of the cured binder-treated soil is proposed. When the curing temperature was changed during curing, the UCS of the specimen cured at a low temperature and then cured at a high temperature was greater than the UCS of the specimen cured at a high temperature first. This seems to be due to different effects of elevated curing temperatures at early and late curing times on the cement reaction rates, such that elevating the curing temperature later produces a more constant reaction rate, which contributes to the reaction efficiency. An optimum mix design that minimizes the amount of binder while satisfying both a target strength of the cured mixture and a target consistency of the uncured mixture can be established by using the fitted equations for UCS and su. The amount of binder required for the optimum mix design increases as the plasticity of the base soil increases and the water content of the base soil (wbase soil) decreases. / Master of Science / The Deep Mixing Method (DMM) is a ground improvement technique widely used to improve the strength and stiffness of loose sands, soft clays, and organic soils. The DMM is useful for both inland and coastal construction. There are two types of deep mixing. The dry method of deep mixing involves adding the binder in the form of dry powder, and the wet method of deep mixing involves mixing binder-water slurry with the soil. The strength of the cured mixture is significantly influenced by the amount of added cement and water, the curing time, and the curing temperature. This research evaluates the influence of curing temperature on the strength of cured cement-treated soil mixture. Mixture proportions and curing conditions also influence the consistency of the mixture right after mixing, which is important because it affects the amount of mixing energy necessary to thoroughly mix the binder slurry with the soil. This research developed and evaluated fitting equations that correlate the cured mixture strength and the uncured mixture consistency with mixture proportions and curing conditions. These fitting equations can then be used to select an economical and practical mix design method that minimizes the amount of binder needed to achieve both the desired cured strength and uncured consistency. The amount of binder required for the optimum mix design increases as the plasticity of the base soil increases and the water content of the base soil (wbase soil) decreases.
3

Effects of Environmental Factors on Construction of Soil-Cement Pavement Layers

Michener, John E. 24 September 2008 (has links)
The specific objectives of this research were to quantify the effects of certain environmental factors on the relative strength loss of soil-cement subjected to compaction delay and to develop a numerical tool that can be easily used by engineers and contractors for determining a maximum compaction delay time for a given project. These objectives were addressed through extensive laboratory work and statistical analyses. The laboratory work involved testing an aggregate base material and a subgrade soil, each treated with two levels of cement. Environmental factors included in the experimentation were wind speed, temperature, and relative humidity, and three levels of each were evaluated in combination with varying compaction delay times. The primary response variables in this research were relative compaction and relative strength. The findings indicate that relative strength is sensitive to variability among the selected independent variables within the ranges investigated in this research, while relative compaction is not. Inferring relative strength from relative compaction is therefore not a reliable approach on soil-cement projects. Consistent with theory, higher wind speed, higher air temperature, lower relative humidity, and higher compaction delay time generally result in lower relative strength. With the nomographs developed in this research, the maximum delay time permitted for compaction of either a base or subgrade material similar to those tested in this research can be determined. Knowing in advance how much time is available for working the soil-cement will help contractors schedule their activities more appropriately and ultimately produce higher quality roads. When acceptable compaction delays are not obtainable due to adverse environmental conditions, a contractor may consider using set retarder, mixing at water contents above OMC, or constructing at night as possible solutions for achieving target relative strength values.

Page generated in 0.0916 seconds