• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low-alkalinity matrix composites based on magnesium oxide cement reinforced with cellulose fibres / Compósitos de baixa alcalinidade à base de óxido de magnésio reforçados com fibras de celulose

Mármol de los Dolores, Gonzalo 21 July 2017 (has links)
A lower-alkalinity cement based on MgO and SiO2 blends is analysed to develop clinker-free Fibre Reinforced Cementitious Composites (FRCC) with cellulosic fibres in order to solve the durability problems of this type of fibres when used in FRCC with Portland cement. Hydration evolution from 7 to 28 days of different MgO-SiO2 formulations is assessed. The main hydration products are Mg(OH)2 and M-S-H gels for all the formulations studied regardless of age. Hardened pastes are obtained with pH values < 11 and good mechanical properties compared to conventional Portland cement. 60% MgO-40% SiO2 system is chosen as optimal for the development FRCC since is the most mechanical resistant and is less alkaline compared with 70% MgO-30% SiO2. FRCC based on magnesium oxide and silica (MgO-SiO2) cement with cellulose fibres are produced to study the durability of lignocellulosic fibres in a lower pH environment than the ordinary Portland cement (PC). Flexural performance and physical tests (apparent porosity, bulk density and water absorption) of samples at 28 days and after 200 accelerated ageing cycles (aac) are compared. Two types of vegetable fibres are utilised: eucalyptus and pine pulps. MgO-SiO2 cement preserves cellulosic fibres integrity after ageing, so composites made out of MgO-SiO2 exhibit significant higher performance after 200 cycles of accelerated ageing than Portland cement composites. High CO2 concentration environment is evaluated as a curing treatment in order to optimise MgO- SiO2 matrices in FRCC. Samples are cured under two different conditions: 1) steam water curing at 55°C and 2) a complementary high CO2 concentration (20% by volume). In carbonated samples, Mg(OH)2 content is clearly lowered while new crystals of hydromagnesite [Mg5 (CO3)4⋅(OH) 2⋅4H2O] are produced. After carbonation, M-S-H gel content is also reduced, suggesting that this phase is also carbonated. Carbonation affects positively to the composite mechanical strength and physical properties with no deleterious effects after ageing since it increases matrix rigidity. The addition of sepiolite in FRCC is studied as a possible additive constituent of the binding matrix. Small cement replacement (1 and 2% wt.) by sepiolite is introduced and studied in hardened cement pastes and, later, in FRCC systems. When used only in cement pastes, it improves Dynamic Modulus of Elasticity over time. Bending tests prove the outcome of this additive on the mechanical performance of the composite: it improves composite homogeneity. Ageing effects are reported after embedding sisal fibres in MgO-SiO2 and PC systems and submitting them to different ageing conditions. This comparative study of fibre degradation applied in different cementitious matrices reveals the real compatibility of lignocellulosic fibres and Mg-based cements. Sisal fibres, even after accelerated ageing, do neither suffer a significant reduction in cellulose content nor in cellulose crystallinity and crystallite size, when exposed to MgO-SiO2 cement. Fibre integrity is preserved and no deposition of cement phases is produced in MgO-SiO2 environment. / Um cimento de baixa alcalinidade à base de blendas de MgO e SiO2 é analisado para o desenvolvimento de Compósitos Cimentícios Reforçados com Fibras (CCRF) celulósicas sem clínquer para resolver os problemas de durabilidade de este tipo de fibras quando são usadas em CCRF com cimento Portland. A evolução da hidratação, desde 7 aos 28 dias, das diferentes formulações é avaliada. Os principais produtos hidratados são o Mg(OH)2 e o gel M-S-H para todas as formulações independentemente da idade estudada. As pastas endurecidas apresentam valores de pH < 11 e bom desempenho mecânico comparado com o cimento Portland convencional. O sistema 60% MgO-40% SiO2 é escolhido como a formulação ótima para o desenvolvimento de CCRF já que é a mais resistente e menos alcalina comparada com 70% MgO-30% SiO2. CCRF com cimento à base de óxido de magnésio e sílica (MgO-SiO2) e fibras celulósicas são produzidos para a análise da durabilidade das fibras lignocelulósicas em ambientes com valores de pH mais baixos comparados com o cimento Portland (PC). O desempenho mecânico a flexão e os ensaios físicos (porosidade aparente, densidade aparente e absorção de água) são comparados aos 28 dias e após de 200 ciclos de envelhecimento acelerado. O cimento à base de MgO-SiO2 preserva a integridade das fibras após o envelhecimento. Os compósitos produzidos com este cimento exibem melhores propriedades após 200 ciclos de envelhecimento acelerado que os compósitos produzidos com cimento Portland. Ambientes com alta concentração de CO2 são avaliados como tratamento de cura para otimizar as matrizes MgO- SiO2 nos CCRF. As amostras são curadas sob 2 condições diferençadas: 1) cura com vapor de água a 55oC e 2) cura com alta concentração de CO2 (20% do volume). As amostras carbonatadas apresentam teores reduzidos de Mg(OH)2 enquanto é produzida uma nova fase cristalina: hidromagnesita [Mg5 (CO3)4⋅(OH) 2⋅4H2O]. Após a carbonatação, o conteúdo de gel M-S-H é reduzido também, indicando uma carbonatação desta fase. A carbonatação aumenta a rigidez da matriz o que influi positivamente no desempenho mecânico e as propriedades físicas dos compósitos sem efeitos prejudiciais ao longo prazo. A adição de sepiolita em CCRF é estudada como possível adição na composição da matriz aglomerante. Baixos teores (1 e 2% em massa) de cimento são substituídos por sepiolita para o estudo das pastas de cimento hidratado e, posteriormente, dos compósitos. O Módulo Elástico Dinâmico das pastas é incrementado com o tempo pela adição de sepiolita. Os ensaios a flexão demostram que a adição de sepiolita melhora a homogeneidade dos compósitos. Reportam-se os efeitos das fibras de sisal após da exposição a sistemas MgO-SiO2 e PC e submetidas a diferentes condições de envelhecimento. Este estudo comparativo da degradação das fibras expostas a diferentes matrizes cimentícias mostra a compatibilidade das fibras lignocelulósicas com os cimentos à base de Mg. As fibras de sisal, inclusive após o envelhecimento acelerado, não apresentam nem redução significativa no conteúdo de celulose nem na cristalinidade da celulose assim como do tamanho de cristalito, quando expostas a cimentos MgO-SiO2.
2

Low-alkalinity matrix composites based on magnesium oxide cement reinforced with cellulose fibres / Compósitos de baixa alcalinidade à base de óxido de magnésio reforçados com fibras de celulose

Gonzalo Mármol de los Dolores 21 July 2017 (has links)
A lower-alkalinity cement based on MgO and SiO2 blends is analysed to develop clinker-free Fibre Reinforced Cementitious Composites (FRCC) with cellulosic fibres in order to solve the durability problems of this type of fibres when used in FRCC with Portland cement. Hydration evolution from 7 to 28 days of different MgO-SiO2 formulations is assessed. The main hydration products are Mg(OH)2 and M-S-H gels for all the formulations studied regardless of age. Hardened pastes are obtained with pH values < 11 and good mechanical properties compared to conventional Portland cement. 60% MgO-40% SiO2 system is chosen as optimal for the development FRCC since is the most mechanical resistant and is less alkaline compared with 70% MgO-30% SiO2. FRCC based on magnesium oxide and silica (MgO-SiO2) cement with cellulose fibres are produced to study the durability of lignocellulosic fibres in a lower pH environment than the ordinary Portland cement (PC). Flexural performance and physical tests (apparent porosity, bulk density and water absorption) of samples at 28 days and after 200 accelerated ageing cycles (aac) are compared. Two types of vegetable fibres are utilised: eucalyptus and pine pulps. MgO-SiO2 cement preserves cellulosic fibres integrity after ageing, so composites made out of MgO-SiO2 exhibit significant higher performance after 200 cycles of accelerated ageing than Portland cement composites. High CO2 concentration environment is evaluated as a curing treatment in order to optimise MgO- SiO2 matrices in FRCC. Samples are cured under two different conditions: 1) steam water curing at 55°C and 2) a complementary high CO2 concentration (20% by volume). In carbonated samples, Mg(OH)2 content is clearly lowered while new crystals of hydromagnesite [Mg5 (CO3)4⋅(OH) 2⋅4H2O] are produced. After carbonation, M-S-H gel content is also reduced, suggesting that this phase is also carbonated. Carbonation affects positively to the composite mechanical strength and physical properties with no deleterious effects after ageing since it increases matrix rigidity. The addition of sepiolite in FRCC is studied as a possible additive constituent of the binding matrix. Small cement replacement (1 and 2% wt.) by sepiolite is introduced and studied in hardened cement pastes and, later, in FRCC systems. When used only in cement pastes, it improves Dynamic Modulus of Elasticity over time. Bending tests prove the outcome of this additive on the mechanical performance of the composite: it improves composite homogeneity. Ageing effects are reported after embedding sisal fibres in MgO-SiO2 and PC systems and submitting them to different ageing conditions. This comparative study of fibre degradation applied in different cementitious matrices reveals the real compatibility of lignocellulosic fibres and Mg-based cements. Sisal fibres, even after accelerated ageing, do neither suffer a significant reduction in cellulose content nor in cellulose crystallinity and crystallite size, when exposed to MgO-SiO2 cement. Fibre integrity is preserved and no deposition of cement phases is produced in MgO-SiO2 environment. / Um cimento de baixa alcalinidade à base de blendas de MgO e SiO2 é analisado para o desenvolvimento de Compósitos Cimentícios Reforçados com Fibras (CCRF) celulósicas sem clínquer para resolver os problemas de durabilidade de este tipo de fibras quando são usadas em CCRF com cimento Portland. A evolução da hidratação, desde 7 aos 28 dias, das diferentes formulações é avaliada. Os principais produtos hidratados são o Mg(OH)2 e o gel M-S-H para todas as formulações independentemente da idade estudada. As pastas endurecidas apresentam valores de pH < 11 e bom desempenho mecânico comparado com o cimento Portland convencional. O sistema 60% MgO-40% SiO2 é escolhido como a formulação ótima para o desenvolvimento de CCRF já que é a mais resistente e menos alcalina comparada com 70% MgO-30% SiO2. CCRF com cimento à base de óxido de magnésio e sílica (MgO-SiO2) e fibras celulósicas são produzidos para a análise da durabilidade das fibras lignocelulósicas em ambientes com valores de pH mais baixos comparados com o cimento Portland (PC). O desempenho mecânico a flexão e os ensaios físicos (porosidade aparente, densidade aparente e absorção de água) são comparados aos 28 dias e após de 200 ciclos de envelhecimento acelerado. O cimento à base de MgO-SiO2 preserva a integridade das fibras após o envelhecimento. Os compósitos produzidos com este cimento exibem melhores propriedades após 200 ciclos de envelhecimento acelerado que os compósitos produzidos com cimento Portland. Ambientes com alta concentração de CO2 são avaliados como tratamento de cura para otimizar as matrizes MgO- SiO2 nos CCRF. As amostras são curadas sob 2 condições diferençadas: 1) cura com vapor de água a 55oC e 2) cura com alta concentração de CO2 (20% do volume). As amostras carbonatadas apresentam teores reduzidos de Mg(OH)2 enquanto é produzida uma nova fase cristalina: hidromagnesita [Mg5 (CO3)4⋅(OH) 2⋅4H2O]. Após a carbonatação, o conteúdo de gel M-S-H é reduzido também, indicando uma carbonatação desta fase. A carbonatação aumenta a rigidez da matriz o que influi positivamente no desempenho mecânico e as propriedades físicas dos compósitos sem efeitos prejudiciais ao longo prazo. A adição de sepiolita em CCRF é estudada como possível adição na composição da matriz aglomerante. Baixos teores (1 e 2% em massa) de cimento são substituídos por sepiolita para o estudo das pastas de cimento hidratado e, posteriormente, dos compósitos. O Módulo Elástico Dinâmico das pastas é incrementado com o tempo pela adição de sepiolita. Os ensaios a flexão demostram que a adição de sepiolita melhora a homogeneidade dos compósitos. Reportam-se os efeitos das fibras de sisal após da exposição a sistemas MgO-SiO2 e PC e submetidas a diferentes condições de envelhecimento. Este estudo comparativo da degradação das fibras expostas a diferentes matrizes cimentícias mostra a compatibilidade das fibras lignocelulósicas com os cimentos à base de Mg. As fibras de sisal, inclusive após o envelhecimento acelerado, não apresentam nem redução significativa no conteúdo de celulose nem na cristalinidade da celulose assim como do tamanho de cristalito, quando expostas a cimentos MgO-SiO2.
3

Flexural behavior of ECC–concrete hybrid composite beams reinforced with FRP and steel bars

Ge, W-J., Ashour, Ashraf, Yu, J., Gao, P., Cao, D-F., Cai, C., Ji, X. 09 November 2018 (has links)
Yes / This paper aims to investigate the flexural behavior of engineered cementitious composite (ECC)-concrete hybrid composite beams reinforced with fiber reinforced polymer (FRP) bars and steel bars. Thirty two hybrid reinforced composite beams having various ECC height replacement ratio and combinations of FRP and steel reinforcements were experimentally tested to failure in flexure. Test results showed that cracking, yield and ultimate moments as well as the stiffness of hybrid and ECC beams are improved compared with traditional concrete beams having the same reinforcement, owing to the excellent tensile properties of ECC materials. The average crack spacing and width decrease with the increase of ECC height replacement ratio. The ductility of hybrid reinforced composite beams is higher than that of traditional reinforced concrete beams while their practical reinforcement ratios are similar. Reinforced ECC beams show considerable energy dissipation capacity owing to ECC’s excellent deformation ability. Considering the constitutive models of materials, compatibility and equilibrium conditions, formulas for the prediction of cracking, yield and ultimate moments as well as deflections of hybrid reinforced ECC-concrete composite beams are developed. The proposed formulas are in good agreement with the experimental results. A comprehensive parametric analysis is, then, conducted to illustrate the effect of reinforcement, ECC and concrete properties on the moment capacity, curvature, ductility and energy dissipation of composite beams. / National Natural Science Foundation of China (51678514, 51308490), the Natural Science Foundation of Jiangsu Province, China (BK20130450), Six Talent Peaks Project of Jiangsu Province (JZ-038, 2016), Graduate Practice Innovation Project of Jiangsu Province (SJCX17-0625), the Jiangsu Government Scholarship for Overseas Studies and Top-level Talents Support Project of Yangzhou University
4

Matrix manipulation to study ECC behaviour

Song, Gao 03 1900 (has links)
Thesis (MScEng (Civil Engineering))--University of Stellenbosch, 2005. / 192 leaves on CD format, preliminary i-xii pages and numbered pages 1-135. Includes bibliography, list of figures and tables. / ENGLISH ABSTRACT: As a fibre reinforced material, engineered cementitious composite (ECC) has tough, strain-hardening behaviour in tension despite containing low volumes of fibres. This property can be brought about by developments in fibre, matrix and interfacial properties. Poly Vinyl Alcohol (PVA) fibre has been developed in recent years for ECC, due to its high tensile strength and elasticity modulus. However, the strong interfacial bond between fibre surface and matrix is a challenge for its application. This study focuses on the tailoring of matrix and fibre/matrix interfacial properties by cement replacement with fly ash (FA) and Ground Granulated Corex Slagment (GGCS). In this study the direct tensile test, three point bending test, micro-scale analysis, such as X-Ray Fluorescence Spectrometry analysis (XRF), Scanning Electron Microscope (SEM), are employed to investigate the influence of cement replacement, aging, Water/Binder (W/B) ratio, workability on ECC behaviour. This study has successfully achieved the aim that cement replacement by FA and GGCS helps to improve the fibre/matrix interfacial properties and therefore enhances the ECC tensile behaviour. Specifically, a high volume FA-ECC has stable high tensile strain capacity at the age of 21 days. This enables a constant matrix design for the investigation of other matrix influences. The Slag-ECC has a higher tensile strength but lower tensile strain capacity. The combination of FA and GGCS, moderate tensile strength and strain capacity is achieved Both tensile tests and Micro-scale analyses infer that the high volume FA-ECC has an adhesive type fibre/matrix interfacial interaction, as opposed to the cohesive type of normal PVA fibre-ECC. The different tensile behaviour trend of steel fibre-ECC and PVA fibre-ECC with the FA content is presented and discussed in this research. The investigations of aging influence indicate that the high volume FA-ECC has a beneficial effect on the properties of the composite at an early stage. However, at a high age, it has some difficulty to undergo multiple cracking and then leads to the reduction of tensile strain capacity. The modified mix design is made with the combination of FA and GGCS, which successfully increases the interfacial bond and, thereby, improves the shear transfer to reach the matrix crack strength. Therefore, an improved high age tensile behaviour is achieved. The W/B and fresh state workability influence investigations show that the W/B can hardly affect the tensile strain at early age. However, the workability influences on composite tensile strain significantly, because of the influence on fibre dispersion. Other investigations with regard to the hybrid fibre influences, the comparison of bending behaviours between extruded plate and cast plate, the relation between bending MOR and tensile stress, and the relation between compression strength and tensile strength contribute to understand ECC behaviour. / AFRIKAANSE OPSOMMING: As ‘n veselversterkte materiaal, het ontwerpte sementbasis saamgestelde materiale, taai vervormingsverhardingseienskappe in trek, ten spyte van lae veselinhoud. Hierdie eienskap word bewerkstellig, deur ontwikkelings in vesel, matriks en tussenveselbindingseienskappe. Poli-Viniel Alkohol (PVA) vesels is ontwikkel vir ECC, as gevolg van die hoë trekkrag en hoë modulus van hierdie veseltipe. Die sterk binding tussen die PVA-veseloppervlak en die matriks is egter ‘n uitdaging vir sy toepassing. Hierdie studie fokus op die skep van gunstige matriks en vesel/matriks tussenvesel-bindingseienskappe deur sement te vervang met vlieg-as (FA) en slagment (GGCS).In hierdie navorsing is direkte trek-toetse, drie-punt-buigtoetse, mikro-skaal analise (soos die X-straal ‘Fluorescence Spectrometry’ analise (XRF) en Skanderende Elektron Mikroskoop (SEM))toegepas. Hierdie metodes is gebruik om die invloed van sementvervanging,veroudering, water/binder (W/B)-verhouding en werkbaarheid op die meganiese gedrag van ECC te ondersoek.Die resultate van hierdie navorsing toon dat sementvervanging deur FA en GGCS help om die vesel/matriks tussenveselbindingseienskappe te verbeter. Dus is die ECC-trekgedrag ook verbeter. Veral ‘n hoë volume FA-ECC het stabiele hoë trekvervormingskapasiteit op ‘n ouderdom van 21 dae. Dit bewerkstellig ‘n konstante matriksontwerp vir die navorsing van ander matriks invloede. Die Slag-ECC het ‘n hoër treksterkte, maar laer trekvervormingskapasiteit. Deur die kombinasie van FA en GGCS word hoë treksterkte, sowel as gematigde vervormbaarheid in trek verkry. Beide trektoetse en mikro-skaal analise dui aan dat die hoë volume FA-ECC ‘n adhesie-tipe vesel/matriks tussenvesel-bindingsinteraksie het, teenoor die ‘kohesie-tipe van normale PVA vesel-ECC. Die verskille in trekgedrag van staalvesel-ECC en PVA vesel-ECC ten opsigte van die FA-inhoud is ondersoek en word bespreek in die navorsing. Die navorsing toon verder dat die hoë volume FA-ECC goeie meganiese eienskappe het op ‘n vroeë ouderdom. Op hoër ouderdom word minder krake gevorm, wat ‘n verlaging in die trekvervormingskapasiteit tot gevolg het. Met die kombinasie van FA en GGCS, word die vesel-matriksverband verhoog, waardeur ‘n verbetering in die skuifoordrag tussen vesel en matriks plaasvind. Verbeterde hoë omeganiese gedrag word daardeur tot stand gebring. Navorsing ten opsigte van die invoed van die W/B en werkbaarheid dui daarop dat die W/B slegs geringe invloed het op die trekvormbaarheid, terwyl die werkbaarheid ‘n dominerende rol speel in hierdie verband.Verdere studies sluit in die invloed van verskillende vesels, die vergelyking van die buigingsgedrag van geëkstueerde plate en gegote plate, die verhouding tussen buigsterkte en treksterkte, en die verhouding tussen druksterkte en treksterkte dra by tot beter begrip van die gedrag van ECC.
5

Balisticky odolné betony / Ballistic-Proof Concretes

Koutný, Ondřej January 2019 (has links)
Doctoral thesis „Ballistic-proof concretes“ deals with description, design and development of material based on ultra-high performance fibre reinforced cementitious composite with increased ballistic resistance i.e. increased resistance against high-strain rate dynamic loading induced by interaction of high-velocity moving objects. High mechanical properties, essential for such a material, are reached especially by maximal reduction of water-to-binder coefficient using high-range water reducing agents, high-strength aggregates and dense structure by precise selection and dosage of raw materials in the recipe. The main goal is to prepare a methodology for design of such a materials, observation of material behaviour on ballistic loading and quantitative description of material response for protective structures design. Properties of designed materials within this thesis are comparing with properties of commercially available and commonly used cementitious composites in order to create a concept for material limits in the field of ballistic protection. This concept enables to estimate ballistic protection of present or newly-designed materials and structures.
6

Aplicação de laminado de polímero reforçado com fibras de carbono (PRFC) inserido em substrato de microconcreto com fibras de aço para reforço à flexão de vigas de concreto armado / Application of carbon fiber reinforced polymer (CFRP) strips inserted in a steel fiber reinforced concrete layer (NSM - Near Surface Mounted) for flexural strengthening of reinforced concrete beams

Arquez, Ana Paula 07 May 2010 (has links)
O reforço de elementos estruturais de concreto armado com uso de polímeros reforçados com fibras de carbono (PRFC) está cada vez mais conhecido, seguro e acessível. Em todo o mundo, a aplicação do PRFC vem sendo estudada sob diversas técnicas. Características como elevada resistência à tração e à corrosão, baixo peso, facilidade e rapidez de aplicação são os principais fatores para essa disseminação. Em particular, a técnica aqui estudada é conhecida como Near Surface Mounted (NSM), que consiste na inserção de laminados de PRFC em entalhes realizados no concreto de cobrimento de elementos de concreto armado. Com dupla área de aderência, ela vem a suprir uma deficiência comum no reforço colado externamente, que é o seu destacamento prematuro. Como nas demais técnicas de reforço à flexão, o material é colado na região do concreto tracionado. Sabe-se que, na prática da intervenção, essa região frequentemente encontra-se danificada por razões diversas, como fissuração causada por ações externas, corrosão da armadura e deterioração do concreto, o que exige a sua prévia reparação. Considerando que a boa qualidade desse reparo é imprescindível à eficiência do reforço, propõe-se uma inovação técnica pela reconstituição da face tracionada da viga com um compósito cimentício de alto desempenho, que sirva como substrato para aplicação do PRFC e elemento de transferência de esforços à estrutura a ser reforçada. Produzido à base de cimento Portland, fibras e microfibras de aço, o compósito tem também potencial para retardar a abertura de fissuras e aumentar a rigidez da viga, melhorando o aproveitamento do reforço. Com apoio da mecânica do fraturamento, foi possível encontrar as taxas de fibras e microfibras de aço a serem adicionadas a uma matriz cimentícia especialmente desenvolvida. Foram realizados ensaios de aderência para estudar o processo de transferência de tensões cisalhantes do laminado para o compósito na zona de ancoragem da viga. Uma vez conhecido o comportamento do sistema, foram ensaiadas vigas de concreto armado de tamanho representativo de estruturas reais, em três diferentes versões de ancoragem do laminado, sendo duas delas com uso do compósito cimentício. Comprovou-se a eficiência da inovação proposta, constatando-se o aumento da rigidez e da capacidade de carga da viga reforçada, com excelente aproveitamento do laminado. Além disso, as fibras e microfibras diminuíram a abertura das fissuras em estágios mais avançados de carregamento, sem que se observasse fissuras horizontais próxima ao reforço, que poderiam indicar destacamento iminente do laminado de PRFC. / Strengthening of reinforced concrete elements with carbon fiber reinforced polymer (CFRP) is increasingly well known, safe and accessible. The application of CFRP has been studied worldwide using various techniques. Features like high tensile strength, corrosion resistance, lightweightness and easy and speedy application are the main factors for dissemination. In particular, the technique here analyzed is known as Near Surface Mounted (NSM), which involves inserting CFRP strips into grooves made on the concrete cover of reinforced concrete elements. With double bonding area, this technique avoids the premature peeling-off that usually takes place in externally bonded CFRP reinforcement. As in others flexural strengthening techniques, the material is bonded in the concrete tension region. It is known in strengthening practice that this region usually requires prior repair. Often it shows up damaged by several reasons such as cracking caused by external actions, reinforcement corrosion and deterioration of the concrete. Whereas the good quality of this repair is essential to strengthening efficiency, an innovative technique is proposed. A high-performance cementitious composite is used as a transition layer for insertion of CFRP strips. The composite is made of Portland cement, steel fibers and microfibers of steel. It also has the potential to delay crack opening and to increase the beam stiffness. Based on fracture mechanics, it was possible to find suitable volume fractions of steel fibers and microfibers to be added to the cementitious matrix. Bonding tests were performed to analyze the shear stress transferring from the CFRP laminate to the beam anchorage zone. Once known the system behavior, real size reinforced concrete beams were tested in three different versions of the anchorage conditions, two of them with use of cementitious composites. The efficiency of the proposed innovation was proved by confirming increased stiffness and load capacity of the strengthened beam. In addition, fibers and microfibers allowed the decrease of the crack opening in later loading steps. No horizontal cracks near to the reinforcement were noticed, which means that CFRP laminate peeling-off was not likely to occur.
7

Zeitliche Entwicklung des Verbundes von AR-Glas- und Kohlenstofffaser- Multifilamentgarnen in zementgebundenen Matrices

Butler, Marko, Hempel, Simone, Mechtcherine, Viktor 03 June 2009 (has links) (PDF)
Mit zunehmendem Alter zeigt das Verbundverhalten von Multifilamentgarnen aus alkaliresistentem Glas (AR-Glas) oder Kohlenstoff in Abhängigkeit von der Zusammensetzung der zementgebundenen Matrix eine sehr unterschiedliche Entwicklung. Während bei AR-Glas teilweise drastische Verluste des Leistungsvermögens zu verzeichnen sind, treten diese bei Kohlefasern nicht auf. Zur Untersuchung der Phänomene wurden beidseitige Garnauszugversuche durchgeführt und die Interphase zwischen Filamenten und Matrix im Rasterelektronenmikroskop (ESEM) untersucht. Die unterschiedlichen mechanischen Eigenschaften stehen in Zusammenhang mit verschieden ausgeprägten Mikrostrukturen der Interphasen. Welche Ursachen die unterschiedliche morphologische Entwicklung der Interphasen hat, ist Gegenstand aktueller Arbeiten.
8

Aplicação de laminado de polímero reforçado com fibras de carbono (PRFC) inserido em substrato de microconcreto com fibras de aço para reforço à flexão de vigas de concreto armado / Application of carbon fiber reinforced polymer (CFRP) strips inserted in a steel fiber reinforced concrete layer (NSM - Near Surface Mounted) for flexural strengthening of reinforced concrete beams

Ana Paula Arquez 07 May 2010 (has links)
O reforço de elementos estruturais de concreto armado com uso de polímeros reforçados com fibras de carbono (PRFC) está cada vez mais conhecido, seguro e acessível. Em todo o mundo, a aplicação do PRFC vem sendo estudada sob diversas técnicas. Características como elevada resistência à tração e à corrosão, baixo peso, facilidade e rapidez de aplicação são os principais fatores para essa disseminação. Em particular, a técnica aqui estudada é conhecida como Near Surface Mounted (NSM), que consiste na inserção de laminados de PRFC em entalhes realizados no concreto de cobrimento de elementos de concreto armado. Com dupla área de aderência, ela vem a suprir uma deficiência comum no reforço colado externamente, que é o seu destacamento prematuro. Como nas demais técnicas de reforço à flexão, o material é colado na região do concreto tracionado. Sabe-se que, na prática da intervenção, essa região frequentemente encontra-se danificada por razões diversas, como fissuração causada por ações externas, corrosão da armadura e deterioração do concreto, o que exige a sua prévia reparação. Considerando que a boa qualidade desse reparo é imprescindível à eficiência do reforço, propõe-se uma inovação técnica pela reconstituição da face tracionada da viga com um compósito cimentício de alto desempenho, que sirva como substrato para aplicação do PRFC e elemento de transferência de esforços à estrutura a ser reforçada. Produzido à base de cimento Portland, fibras e microfibras de aço, o compósito tem também potencial para retardar a abertura de fissuras e aumentar a rigidez da viga, melhorando o aproveitamento do reforço. Com apoio da mecânica do fraturamento, foi possível encontrar as taxas de fibras e microfibras de aço a serem adicionadas a uma matriz cimentícia especialmente desenvolvida. Foram realizados ensaios de aderência para estudar o processo de transferência de tensões cisalhantes do laminado para o compósito na zona de ancoragem da viga. Uma vez conhecido o comportamento do sistema, foram ensaiadas vigas de concreto armado de tamanho representativo de estruturas reais, em três diferentes versões de ancoragem do laminado, sendo duas delas com uso do compósito cimentício. Comprovou-se a eficiência da inovação proposta, constatando-se o aumento da rigidez e da capacidade de carga da viga reforçada, com excelente aproveitamento do laminado. Além disso, as fibras e microfibras diminuíram a abertura das fissuras em estágios mais avançados de carregamento, sem que se observasse fissuras horizontais próxima ao reforço, que poderiam indicar destacamento iminente do laminado de PRFC. / Strengthening of reinforced concrete elements with carbon fiber reinforced polymer (CFRP) is increasingly well known, safe and accessible. The application of CFRP has been studied worldwide using various techniques. Features like high tensile strength, corrosion resistance, lightweightness and easy and speedy application are the main factors for dissemination. In particular, the technique here analyzed is known as Near Surface Mounted (NSM), which involves inserting CFRP strips into grooves made on the concrete cover of reinforced concrete elements. With double bonding area, this technique avoids the premature peeling-off that usually takes place in externally bonded CFRP reinforcement. As in others flexural strengthening techniques, the material is bonded in the concrete tension region. It is known in strengthening practice that this region usually requires prior repair. Often it shows up damaged by several reasons such as cracking caused by external actions, reinforcement corrosion and deterioration of the concrete. Whereas the good quality of this repair is essential to strengthening efficiency, an innovative technique is proposed. A high-performance cementitious composite is used as a transition layer for insertion of CFRP strips. The composite is made of Portland cement, steel fibers and microfibers of steel. It also has the potential to delay crack opening and to increase the beam stiffness. Based on fracture mechanics, it was possible to find suitable volume fractions of steel fibers and microfibers to be added to the cementitious matrix. Bonding tests were performed to analyze the shear stress transferring from the CFRP laminate to the beam anchorage zone. Once known the system behavior, real size reinforced concrete beams were tested in three different versions of the anchorage conditions, two of them with use of cementitious composites. The efficiency of the proposed innovation was proved by confirming increased stiffness and load capacity of the strengthened beam. In addition, fibers and microfibers allowed the decrease of the crack opening in later loading steps. No horizontal cracks near to the reinforcement were noticed, which means that CFRP laminate peeling-off was not likely to occur.
9

Porušování vybraných stavebních kompozitů v blízkosti rozhraní plniva a matrice / Fracture of selected building composites in the vicinity of aggregate-matrix-interface

Vyhlídal, Michal January 2018 (has links)
The interface between aggregate grains and matrix in cementitious composites is their weakest element. The topic is particularly significant in the case of high performance and high strength concrete technology for which the eliminination or reduction of these weak links are necessary. The aim of this thesis is to determine the influence of the interface on the fracture behaviour of the cementitious composites. The fracture experiments were performed for this purpose and were complemented by the nanoindentation’s results and scanning electron microscopy results. Numerical model was created in ANSYS software on the basis of these data and the fracture toughness values of the interface were evaluated by means of the generalized fracture mechanics principles. Conclusion of the thesis is proof that the interface properties have a significant influence on the fracture behaviour of cementitious composites.
10

Zeitliche Entwicklung des Verbundes von AR-Glas- und Kohlenstofffaser- Multifilamentgarnen in zementgebundenen Matrices

Butler, Marko, Hempel, Simone, Mechtcherine, Viktor 03 June 2009 (has links)
Mit zunehmendem Alter zeigt das Verbundverhalten von Multifilamentgarnen aus alkaliresistentem Glas (AR-Glas) oder Kohlenstoff in Abhängigkeit von der Zusammensetzung der zementgebundenen Matrix eine sehr unterschiedliche Entwicklung. Während bei AR-Glas teilweise drastische Verluste des Leistungsvermögens zu verzeichnen sind, treten diese bei Kohlefasern nicht auf. Zur Untersuchung der Phänomene wurden beidseitige Garnauszugversuche durchgeführt und die Interphase zwischen Filamenten und Matrix im Rasterelektronenmikroskop (ESEM) untersucht. Die unterschiedlichen mechanischen Eigenschaften stehen in Zusammenhang mit verschieden ausgeprägten Mikrostrukturen der Interphasen. Welche Ursachen die unterschiedliche morphologische Entwicklung der Interphasen hat, ist Gegenstand aktueller Arbeiten.

Page generated in 0.1351 seconds