11 |
Holographic quantum liquidsKaplis, Nikolaos January 2013 (has links)
In this thesis, applications of Holography in the context of Condensed Matter Physics and in particular hydrodynamics, will be studied. Holog- raphy or gauge/gravity duality has been an enormously useful tool in studying strongly-coupled Field Theories with particular success in their low-frequency and large-wavelength fluctuation regime, i.e the hydrody- namical regime. Here, following a phenomenological approach, gravita- tional systems, simple enough to be properly examined, will be studied in order to derive as much information as possible about their dual theories, given that their exact form is not accessible in this way. After a review of the most important elements of standard Condensed Matter Theory, the gauge/gravity duality itself will be presented, along with some of its most important achievements. Having established the framework of this work, the main results of this thesis will be presented. Initially the sound channel of the theory dual to the anti-de Sitter Reissner–Nordstro ̈m black hole space-time will be studied, at finite temperature and finite chemical potential. Hydrodynamical properties of the boundary theory will be of major interest. Following that, focus will be shifted towards another grav- itational system, namely the Electron Star. There, the shear channel of the dual theory will be mainly examined. The goal will be, as before, to extract information about the hydrodynamical properties of the boundary theory.
|
12 |
Holographic studies of thermalization and dissipation in strongly coupled theoriesTangarife García, Walter Orlando 18 September 2014 (has links)
This thesis presents a series of studies of thermalization and dissipation in a variety of strongly coupled systems. The main tool for these investigations is the Gauge/Gravity duality, which establishes a correspondence between a d+1-dimensional quantum theory of gravity and a d-dimensional quantum field theory. We study the decay rates of fluctuations around the thermal equilibrium in theories in non-commutative geometry. Rapid thermalization of such fluctuations is found and motivates the conjecture that the phenomena at the black hole horizon is described by non-local physics. In the same type of environment, we analyze the Langevin dynamics of a heavy quark, which undergoes Brownian motion. We find that the late-time behavior of the displacement squared is unaffected by the non-commutativity of the geometry. In a different scenario, we study the correlation functions in theories with quantum critical points. We compute the response of these quantum critical points to a disturbance caused by a massive charged particle and analyze its late time behavior. Finally, we analyze systems far-from-equilibrium as they evolve towards a thermal state. We characterize this evolution for systems with chemical potential by focusing on the ``strong subadditivity" property of their entanglement entropy. This is achieved on the gravity side by using time dependent functions for mass and charge in an AdS-Vaydia metric. / text
|
13 |
Holographic Description of Curved-Space Quantum Field Theory and Gravity / Holographische Beschreibung von Quantenfeldtheorie auf gekrümmter Raumzeit und GravitationUhlemann, Christoph Frank January 2012 (has links) (PDF)
The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these tensions is partly in the structure of the geometry with AdS conformal boundary, while another one arises for a particular limiting case where the bulk and boundary descriptions naively disagree. Besides technical challenges, the hierarchy of boundaries for the geometry with AdS conformal boundary offers an interesting option. Namely, having the dual theory on the conformal boundary itself defined on an AdS space offers the logical possibility of implementing a second instance of AdS/CFT. We discuss an appropriate geometric setting allowing for the notion of the boundary of a boundary and identify limitations for such multi-layered dualities. In the second part we consider five-dimensional supergravities whose solutions can be lifted to actual string-theory backgrounds. We work out the asymptotic structure of the theories on asymptotically-AdS spaces and calculate the Weyl anomaly of the dual CFTs. These holographic calculations confirm the expectations from the field-theory side and provide a non-trivial test of the AdS/CFT conjecture. Moreover, building on the previous results we show that in addition to the usual Dirichlet also more general boundary conditions can be imposed. That allows to promote the boundary metric to a dynamical quantity and is expected to yield a holographic description for a conformal supergravity on the boundary. The boundary theory obtained this way exhibits pathologies such as perturbative ghosts, which is in fact expected for a conformal gravity. The fate of these ghosts beyond perturbation theory is an open question and our setting provides a starting point to study it from the string-theory perspective. That discussion leads to a regime where the holographic description of the boundary theory requires quantization of the bulk supergravity. A necessary ingredient of any supergravity is a number of gravitinos as superpartners of the graviton, for which we thus need an effective-QFT description to make sense of AdS/CFT beyond the limit where bulk theory becomes classical. In particular, quantization should be possible not only on rigid AdS, but also on generic asymptotically-AdS spacetimes which may not be Einstein. In the third part we study the quantization and causality properties of the gravitino on Friedmann-Robertson-Walker spacetimes to explicitly show that a consistent quantization can be carried out also on non-Einstein spaces, in contrast to claims in the recent literature. Furthermore, this reveals interesting non-standard effects for the gravitino propagation, which in certain cases is restricted to regions more narrow than the expected light cones. / Die AdS/CFT-Dualitäten ermöglichen einen Zugang zu stark gekoppelten Quantenfeldtheorien (QFT), welche einerseits für die Beschreibung der Natur eine große Rolle spielen, andererseits aber mittels der üblichen mathematischen Methoden schwer zu behandeln sind. Die etablierten Beispiele solcher Dualitäten identifizieren klassische supersymmetrische Gravitationstheorien auf (d+1)-dimensionalen anti-de Sitter Räumen (AdS) mit d-dimensionalen stark gekoppelten konformen Feldtheorien (CFT). Die AdS Raumzeiten besitzen einen zeitartigen konformen Rand, auf dem die duale CFT definiert ist. In diesem Sinn sind die Dualitäten also holographisch, und dieser Zugang hat zu beachtlichen Fortschritten im Verständnis von CFT auf der Minkowski-Raumzeit und dem Einstein-Zylinder geführt. Auf der anderen Seite ist das Verständnis von QFT auf allgemeineren gekrümmten Raumzeiten von besonderem Interesse und nicht-trivial bereits für freie Theorien. Darüber hinaus bleibt das Verständnis von Gravitation als Quantentheorie eines der schwierigsten Probleme in der Physik. Beide Fragestellungen können holographisch betrachtet werden, und wir untersuchen hier Verallgemeinerungen der AdS/CFT-Dualitäten, welche auf der niederdimensionalen Seite QFT auf gekrümmten Räumen und als weitere Verallgemeinerung auch Gravitation beschreiben. Im ersten Teil erweitern wir die holographische Beschreibung von QFT auf festen gekrümmten Raumzeiten, welche sich Gravitationstheorien auf asymptotisch-AdS Räumen mit der entsprechenden Randstruktur bedient. Wir diskutieren Geometrien, deren konformer Rand mit de Sitter oder AdS Raumzeiten identifiziert werden kann, um CFTs auf diesen Räumen holographisch zu beschreiben. Nachdem wir die holographische Renormierung etabliert haben, studieren wir die Unitaritätseigenschaften der CFTs mit Hilfe der dualen bulk-Beschreibung. Die Geometrie mit AdS als Rand zeigt eine Reihe von interessanten Eigenschaften, hauptsächlich da der Rand dieser Geometrie selbst einen Rand hat. Wir untersuchen beide Geometrien und lösen potenzielle Differenzen zwischen den Rand- und bulk-Theorien, welche mit einer Dualität inkompatibel wären. Der Ursprung dieser Differenzen liegt zum einen in der Struktur der Geometrie mit AdS als Rand und rührt zum anderen von einem speziellen Grenzfall, in dem sich die beiden Beschreibungen auf den ersten Blick unterscheiden. Neben technischen Herausforderungen bietet die Hierarchie von Rändern bei der Geometrie mit AdS als Rand eine interessante Option: Mit der dualen CFT wiederum definiert auf einem AdS Raum besteht zumindest prinzipiell die Möglichkeit, eine weitere Instanz von AdS/CFT zu implementieren. Wir diskutieren den passenden geometrischen Rahmen, in dem der Begriff des Randes eines Randes ein wohldefiniertes Konzept ist, und identifizieren Einschränkungen für solche mehrstufige Dualitäten. Im zweiten Teil behandeln wir fünfdimensionale supersymmetrische Gravitationstheorien, deren Lösungen als Stringtheorie-Konfigurationen interpretiert werden können. Wir arbeiten die asymptotische Struktur dieser Theorien auf asymptotisch-AdS Räumen heraus und berechnen die Weyl-Anomalie der dualen CFTs. Diese Rechnungen bestätigen die Erwartungen von der Feldtheorieseite und liefern damit einen nicht-trivialen Test der AdS/CFT-Vermutung. Aufbauend auf diesen Resultaten zeigen wir, dass zusätzlich zu den üblichen Dirichlet- auch allgemeinere Randbedingungen gestellt werden können. Damit wird die Randmetrik zu einer dynamischen Größe und es ergibt sich eine duale Beschreibung für eine konforme Supergravitationstheorie auf dem Rand. Die so erhaltene Randtheorie weist pathologische Eigenschaften wie perturbative Geister auf, was für konforme Gravitationstheorien zu erwarten ist. Die Rolle dieser Geister über die Störungstheorie hinaus ist eine offene Frage und unsere Konstruktion bietet einen Startpunkt, sie von der Stringtheorie-Perspektive zu untersuchen. Dies führt uns in einen Bereich, in dem die holographische Beschreibung der Randtheorie die Quantisierung der bulk-Theorie erfordert. Ein Bestandteil jeder supersymmetrischen Gravitationstheorie ist das Gravitino als Partner des Gravitons, für welches wir daher eine Beschreibung in Form von effektiver QFT benötigen. Insbesondere sollte die Quantisierung auch auf allgemeineren Hintergründen, die nicht notwendig die Einstein-Bedingung erfüllen, möglich sein. Im dritten Teil studieren wir die Quantisierung und Kausalitätseigenschaften des Gravitinos auf Friedmann-Robertson-Walker Raumzeiten. Dabei zeigen wir, dass eine konsistente Quantisierung auch auf Raumzeiten möglich ist, die nicht der Einstein-Bedingung genügen, im Gegensatz zu anderslautenden Schlussfolgerungen in der aktuellen Literatur. Darüber hinaus finden wir interessante Effekte für die Propagation der Gravitinos, welche in bestimmten Fällen auf echte Teilmengen der zu erwartenden Lichtkegel eingeschränkt ist.
|
14 |
Holographic Entanglement Entropy: RG Flows and Singular SurfacesSingh, Ajay 07 August 2012 (has links)
Over the past decade, the AdS/CFT correspondence has proven to be a remarkable tool to study various properties of strongly coupled field theories. In the context of the holography, Ryu and Takayanagi have proposed an elegant method to calculate entanglement entropy for these field theories. In this thesis, we use this holographic entanglement entropy to study a candidate c-theorem and entanglement entropy for singular surfaces.
We use holographic entanglement entropy for strip geometry and construct a candidate c-function in arbitrary dimensions. For holographic theories dual to Einstein gravity, this c-function is shown to decrease monotonically along RG flows. A sufficient condition required for this monotonic flow is that the stress tensor of the matter fields driving the holographic RG flow must satisfy the null energy condition over the holographic surface used to calculate the entanglement entropy. In the case where the bulk theory is described by Gauss-Bonnet gravity, the latter condition alone is not sufficient to establish the monotonic flow of the c-function. We also observe that for certain holographic RG flows, the entanglement entropy undergoes a ‘phase transition’ as the size of the system grows and as a result, evolution of the c-function may exhibit a discontinuous drop.
Then, we turn towards studying the holographic entanglement entropy for regions with a singular boundary in higher dimensions. Here, we find that various singularities make new universal contributions. When the boundary CFT has an even spacetime dimension, we find that the entanglement entropy of a conical surface contains a term quadratic in the logarithm of the UV cut-off. In four dimensions, the coefficient of this contribution is proportional to the central charge c. A conical singularity in an odd number of spacetime dimensions contributes a term proportional to the logarithm of the UV cut-off. We also study the entanglement entropy for various boundary surfaces with extended singularities. In these cases, extended singularities contribute through new linear or quadratic terms in logarithm only when the locus of the singularity is even dimensional and curved.
|
15 |
On Holographic Non-Local Operators and Multiple M2-Branes TheoriesPasserini, Filippo 26 May 2009 (has links)
Gauge-string duality has provided a powerful framework for the study of strongly coupled gauge theories and non-perturbative string models. This thesis analyzes the holographic description of non-local gauge theory operators and some aspects of the Bagger-Lambert theory. The latter, as a proposal for a multiple M2-branes effective theory, is conjectured to be the holographic dual of a compactification of M-theory.
We show that all half-BPS Wilson loop operators in N=4 SYM - which are labeled by Young tableaus - have a gravitational dual description in terms of D5-branes or alternatively in terms of D3-branes in AdS5xS5. We prove that the insertion of a half-BPS Wilson loop operator in the N=4 SYM path integral is achieved by integrating out the degrees of freedom on a configuration of bulk D5-branes or alternatively on a configuration of bulk D3-branes.
We construct a new class of supersymmetric surface operators in N=4 SYM and find the corresponding dual supergravity solutions.
Consistency requires constructing N=4 SYM in the D7 supergravity background and not in flat space. This enlarges the class of holographic gauge theories dual to string theory backgrounds to gauge theories in non-trivial supergravity backgrounds. We write down a maximally supersymmetric one parameter deformation of the field theory action of Bagger and Lambert and we show that this theory on RxT2 is invariant under the superalgebra of the maximally supersymmetric Type IIB plane wave. It is argued that this theory holographically describes the Type IIB plane wave in the discrete light-cone quantization (DLCQ). Finally, we show by explicit computation that the Bagger-Lambert Lagrangian realizes the M2-brane superalgebra, including also two p-form central charges that encode the M-theory intersections involving M2-branes.
|
16 |
On Holographic Non-Local Operators and Multiple M2-Branes TheoriesPasserini, Filippo 26 May 2009 (has links)
Gauge-string duality has provided a powerful framework for the study of strongly coupled gauge theories and non-perturbative string models. This thesis analyzes the holographic description of non-local gauge theory operators and some aspects of the Bagger-Lambert theory. The latter, as a proposal for a multiple M2-branes effective theory, is conjectured to be the holographic dual of a compactification of M-theory.
We show that all half-BPS Wilson loop operators in N=4 SYM - which are labeled by Young tableaus - have a gravitational dual description in terms of D5-branes or alternatively in terms of D3-branes in AdS5xS5. We prove that the insertion of a half-BPS Wilson loop operator in the N=4 SYM path integral is achieved by integrating out the degrees of freedom on a configuration of bulk D5-branes or alternatively on a configuration of bulk D3-branes.
We construct a new class of supersymmetric surface operators in N=4 SYM and find the corresponding dual supergravity solutions.
Consistency requires constructing N=4 SYM in the D7 supergravity background and not in flat space. This enlarges the class of holographic gauge theories dual to string theory backgrounds to gauge theories in non-trivial supergravity backgrounds. We write down a maximally supersymmetric one parameter deformation of the field theory action of Bagger and Lambert and we show that this theory on RxT2 is invariant under the superalgebra of the maximally supersymmetric Type IIB plane wave. It is argued that this theory holographically describes the Type IIB plane wave in the discrete light-cone quantization (DLCQ). Finally, we show by explicit computation that the Bagger-Lambert Lagrangian realizes the M2-brane superalgebra, including also two p-form central charges that encode the M-theory intersections involving M2-branes.
|
17 |
Integrability in AdS/CFT: Exacts Results for Correlation FunctionsEscobedo, Jorge January 2012 (has links)
We report on the first systematic study of correlation functions in N=4 super Yang-Mills theory using integrability techniques. In particular, we show how to compute three- and four- point functions of single-trace gauge-invariant operators at tree level in the SU(2) sector of the theory. Using the AdS/CFT correspondence, the correlation functions that we compute can be thought of as the joining or splitting of strings moving in AdS5 × S5. We show that when one (two) of the operators in the three-(four-)point function are taken to be small BPS operators, our weak coupling results match perfectly with the strong coupling results in the Frolov-Tseytlin limit. We conclude by presenting some results that will be needed to extend the methods presented in this thesis beyond the SU(2) sector of N=4 super Yang-Mills.
|
18 |
Chiral symmetry breaking and external fields in the Kuperstein-Sonnenschein modelAlam, Muhammad Sohaib 02 August 2012 (has links)
A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the ``magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually perpendicular and parallel. / text
|
19 |
Integrability in AdS/CFT: Exacts Results for Correlation FunctionsEscobedo, Jorge January 2012 (has links)
We report on the first systematic study of correlation functions in N=4 super Yang-Mills theory using integrability techniques. In particular, we show how to compute three- and four- point functions of single-trace gauge-invariant operators at tree level in the SU(2) sector of the theory. Using the AdS/CFT correspondence, the correlation functions that we compute can be thought of as the joining or splitting of strings moving in AdS5 × S5. We show that when one (two) of the operators in the three-(four-)point function are taken to be small BPS operators, our weak coupling results match perfectly with the strong coupling results in the Frolov-Tseytlin limit. We conclude by presenting some results that will be needed to extend the methods presented in this thesis beyond the SU(2) sector of N=4 super Yang-Mills.
|
20 |
Holographic Entanglement Entropy: RG Flows and Singular SurfacesSingh, Ajay 07 August 2012 (has links)
Over the past decade, the AdS/CFT correspondence has proven to be a remarkable tool to study various properties of strongly coupled field theories. In the context of the holography, Ryu and Takayanagi have proposed an elegant method to calculate entanglement entropy for these field theories. In this thesis, we use this holographic entanglement entropy to study a candidate c-theorem and entanglement entropy for singular surfaces.
We use holographic entanglement entropy for strip geometry and construct a candidate c-function in arbitrary dimensions. For holographic theories dual to Einstein gravity, this c-function is shown to decrease monotonically along RG flows. A sufficient condition required for this monotonic flow is that the stress tensor of the matter fields driving the holographic RG flow must satisfy the null energy condition over the holographic surface used to calculate the entanglement entropy. In the case where the bulk theory is described by Gauss-Bonnet gravity, the latter condition alone is not sufficient to establish the monotonic flow of the c-function. We also observe that for certain holographic RG flows, the entanglement entropy undergoes a ‘phase transition’ as the size of the system grows and as a result, evolution of the c-function may exhibit a discontinuous drop.
Then, we turn towards studying the holographic entanglement entropy for regions with a singular boundary in higher dimensions. Here, we find that various singularities make new universal contributions. When the boundary CFT has an even spacetime dimension, we find that the entanglement entropy of a conical surface contains a term quadratic in the logarithm of the UV cut-off. In four dimensions, the coefficient of this contribution is proportional to the central charge c. A conical singularity in an odd number of spacetime dimensions contributes a term proportional to the logarithm of the UV cut-off. We also study the entanglement entropy for various boundary surfaces with extended singularities. In these cases, extended singularities contribute through new linear or quadratic terms in logarithm only when the locus of the singularity is even dimensional and curved.
|
Page generated in 0.0494 seconds