• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of a 5GHz Modular Radio Frontend for WLAN Based on IEEE 802.11p

Abbasi, Mahdi January 2008 (has links)
<p>The number of vehicles has increased significantly in recent years, which causeshigh density in traffic and further problems like accidents and road congestions.A solution regarding to this problem is vehicle-to-vehicle communication, wherevehicles are able to communicate with their neighboring vehicles even in the absenceof a central base station, to provide safer and more efficient roads and toincrease passenger safety.The goal of this thesis is to investigate basic physical layer parameters of ainter-vehicle communication system, like emission power, spectral emission, errorvector magnitude, guard interval, ramp-up/down time, and third order interceptpoint. I also studied the intelligent transportation system’s channel layout inEurope, how the interference of other systems are working in co-channel and adjacentchannels, and some proposals to use the allocated frequency bands. On theother hand, the fundamentals of OFDM transmission and definitions of OFDMkey parameters in IEEE 802.11p are investigated.The focus of this work is on the measurement of transmitter frontend parametersof a new testbed designed and fabricated in order to be used at inter-vehiclecommunication based on IEEE 802.11p.</p> / Road safety applications, Vehicle-to-Vehicle communication
2

Characterization of a 5GHz Modular Radio Frontend for WLAN Based on IEEE 802.11p

Abbasi, Mahdi January 2008 (has links)
The number of vehicles has increased significantly in recent years, which causeshigh density in traffic and further problems like accidents and road congestions.A solution regarding to this problem is vehicle-to-vehicle communication, wherevehicles are able to communicate with their neighboring vehicles even in the absenceof a central base station, to provide safer and more efficient roads and toincrease passenger safety.The goal of this thesis is to investigate basic physical layer parameters of ainter-vehicle communication system, like emission power, spectral emission, errorvector magnitude, guard interval, ramp-up/down time, and third order interceptpoint. I also studied the intelligent transportation system’s channel layout inEurope, how the interference of other systems are working in co-channel and adjacentchannels, and some proposals to use the allocated frequency bands. On theother hand, the fundamentals of OFDM transmission and definitions of OFDMkey parameters in IEEE 802.11p are investigated.The focus of this work is on the measurement of transmitter frontend parametersof a new testbed designed and fabricated in order to be used at inter-vehiclecommunication based on IEEE 802.11p. / Road safety applications, Vehicle-to-Vehicle communication

Page generated in 0.0504 seconds