• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiple Gravity Assists for Low Energy Transport in the Planar Circular Restricted 3-Body Problem

Werner, Matthew Allan 23 June 2022 (has links)
Much effort in recent times has been devoted to the study of low energy transport in multibody gravitational systems. Despite continuing advancements in computational abilities, such studies can often be demanding or time consuming in the three-body and four-body settings. In this work, the Hamiltonian describing the planar circular restricted three-body problem is rewritten for systems having small mass parameters, resulting in a 2D symplectic twist map describing the evolution of a particle's Keplerian motion following successive close approaches with the secondary. This map, like the true dynamics, admits resonances and other invariant structures in its phase space to be analyzed. Particularly, the map contains rotational invariant circles reminiscent of McGehee's invariant tori blocking transport in the true phase space, adding a new quantitative description to existing chaotic zone estimates about the secondary. Used in a patched three-body setting, the map also serves as a tool for investigating transfer trajectories connecting loose captures about one secondary to the other without any propulsion systems. Any identified initial conditions resulting in such a transfer could then serve as initial guesses to be iterated upon in the continuous system. In this work, the projection of the McGehee torus within the interior realm is identified and quantified, and a transfer from Earth to Venus is exemplified. / Master of Science / The transport of a particle between celestial bodies, such as planets and moons, is an important phenomenon in astrodynamics. There are multiple ways to mediate this objective; commonly, the motion can be influenced directly via propulsion systems or, more exotically, by utilizing the passive dynamics admitted by the system (such as gravitational assists). Gravitational assists are traditionally modelled using two-body dynamics. That is, a space- craft or particle performs a flyby within that body's sphere of influence where momentum is exchanged in the process. Doing so provides accurate and reliable results, but the design space effecting the desired outcome is limited when considering the space of all possibilities. Utilizing three-body dynamics, however, provides a significant improvement in the fidelity and variety of trajectories over the two-body approach, and thus a broader space through which to search. Through a series of approximations from the three-body problem, a discrete map describing the evolution of nearly Keplerian orbits through successive close encounters with the body is formed. These encounters occur outside of the body's sphere of influence and are thus uniquely formed from three-body dynamics. The map enables computation of a trajectory's fate (in terms of transit) over numerical integration and also provides a boundary for which transit is no longer possible. Both of these features are explored to develop an algorithm able to rapidly supply guesses of initial conditions for a transfer in higher fidelity models and further develop the existing literature on the chaotic zone surrounding the body.
2

Chaotic transport and partial barriers in 4D symplectic maps

Firmbach, Markus 02 March 2021 (has links)
Hamiltonian systems typically exhibit a mixed phase space in which regions of regular and chaotic dynamics coexist. The chaotic transport is restricted due to partial barriers, since they only allow for a small flux between different regions of phase space. In systems with a two-dimensional (2D) phase space these partial barriers are well understood. However, in systems with a four-dimensional (4D) phase space their dynamical origin is an open question. Thus, we study these partial barriers and the related chaotic transport in 4D maps. For the chaotic transport, we observe a slow power-law decay of the Poincaré recurrence statistics. This is caused by long-trapped orbits exploring stochastic layers of resonance channels. Moreover, we analyze them and find clear signatures of partial transport barriers. We identify normally hyperbolic invariant manifolds (NHIMs) as the relevant objects determining the flux across these barriers. In addition, NHIMs also form the backbone for the explicit construction of partial barriers. This allows us to determine the flux by measuring the turnstile volume. Moreover, we conjecture the existence of a relevant partial barrier with minimal flux by generalizing a cantorus barrier present in 2D maps. Local properties of the flux are studied and explained in terms of the NHIM. / Hamiltonische Systeme zeigen üblicherweise einen gemischten Phasenraum, in dem Bereiche regulärer und chaotischer Dynamik vorherrschen. Der chaotische Transport wird durch partielle Barrieren behindert, da diese nur einen kleinen Fluss zwischen getrennten Bereichen des Phasenraums zulassen. Für Systeme mit einem zweidimensionalen (2D) Phasenraum sind diese bereits gut verstanden. Hingegen ist deren dynamischer Ursprung in Systemen mit einem vierdimensionalen (4D) Phasenraum noch ungeklärt. In dieser Arbeit betrachten wir deshalb in 4D Abbildungen sowohl chaotischen Transport, als auch partielle Barrieren. Für den chaotischen Transport lässt sich die Verteilung der Poincaré-Rückkehrzeiten durch ein Potenzgesetz beschreiben. Lange Rückkehrzeiten sind dabei auf Trajektorien zurückzuführen, die in den chaotischen Bereichen von Resonanzkanälen verweilen. Für diese stellen wir eindeutige Signaturen von partiellen Barrieren fest. Es zeigt sich, dass normal hyperbolische invariante Mannigfaltigkeiten (NHIM) die maßgeblichen Objekte sind, die den Fluss über partielle Barrieren beschreiben. Anhand dieser lassen sich auch partiellen Barrieren explizit konstruieren, was uns wiederum ermöglicht den Fluss mittels einer Volumenmessung zu bestimmen. Durch die Verallgemeinerung einer Cantorusbarriere, die bereits in 2D Abbildungen auftreten, finden wir eine relevante partielle Barriere mit kleinstem Fluss. Weiterhin betrachten wir die lokale Abhängigkeit des Flusses, welche sich mittels der NHIM beschreiben lässt.
3

Classical and quantum transport in 4D symplectic maps

Stöber, Jonas 21 March 2023 (has links)
Partial transport barriers in the chaotic sea of Hamiltonian systems restrict classical chaotic transport, as they only allow for a small flux between phase-space regions. In two-dimensional (2D) symplectic maps, the most restrictive partial barriers are based on a cantorus, the remnants of a broken one-dimensional (1D) torus forming a Cantor set. Quantum mechanically for 2D symplectic maps one has a universal transition from impeded to unimpeded transport. The scaling parameter is the ratio of flux to the Planck cell of size h, so quantum transport is suppressed if h is much bigger than the flux while mimicking classical transport if it is much smaller. Whether a transition exists in higher-dimensional systems and how it scales is still an open question and will be answered in this talk. In a four-dimensional (4D) symplectic map, the cantorus is generalized to a normally hyperbolic invariant manifold (NHIM) with the structure of a cantorus. Using the general flux formula, we consider higher-order periodic NHIMs to approximate the global flux across a partial barrier. One naively expects that the scaling parameter of the universal transition is the same, but now with a Planck cell h squared. We show that due to classical diffusive transport along resonance channels, the quantized system exhibits dynamical localization and the localization length modifies the scaling parameter. / Partielle Transportbarrieren in der chaotischen See von Hamiltonischen Systemen schränken den klassischen chaotischen Transport ein, indem sie nur einen kleinen Fluss zwischen Phasenraumregionen zulassen. In zweidimensionalen (2D) symplektischen Abbildungen basieren die restriktivsten partiellen Barrieren auf einem Cantorus, die Cantor-Menge der Überreste eines zerstörten ein-dimensionalen (1D) Torus. In quantisierten 2D symplektischen Abbildungen findet man einen universellen Übergang von eingeschränktem zu uneingeschränktem Transport. Der Skalierungsparameter ist das Verhältnis vom Fluss zur Planck-Zelle der Größe h, so dass der quantenmechanische Transport unterdrückt ist, wenn h sehr viel größer ist als der Fluss, während klassischer Transport nachgeahmt wird, wenn er sehr viel kleiner ist. Ob jedoch auch ein universeller Übergang in höherdimensionalen Systemen existiert und wie er skaliert, ist bislang ungeklärt und wird in dieser Arbeit untersucht. In einer vierdimensionalen (4D) symplektischen Abbildung ist die Verallgemeinerung des Cantorus eine normal hyperbolische invariante Mannigfaltigkeit (NHIM) mit der Struktur eines Cantorus. Wir betrachten periodische NHIMs höherer Ordnung um den globalen Fluss durch eine partielle Barriere mit der allgemeinen Flussformel zu approximieren. Naiverweise erwartet man, dass der Skalierungsparameter des universellen Übergangs gleich ist, jedoch mit der neuen Größe der Planck-Zelle h quadriert. Wir zeigen, dass aufgrund von klassischen, diffusiven Transport entlang von Resonanzkanälen das quantisierte System dynamische Lokalisierung aufweist und die Lokalisierungslänge Einfluss auf den Skalierungsparameter hat.

Page generated in 0.0506 seconds