• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 32
  • 9
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 94
  • 38
  • 12
  • 12
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Synthèses, analyses et applications de systèmes à base de nanoparticules hybrides Or/Thiol / Synthesis, analysis and application based systems hybrid nanoparticles Metal/Organic

Bouyon Yenda, Tracy Christ 16 December 2016 (has links)
Cette thèse développe la synthèse contrôlée et la purification de nanoparticules d’or hybrides, AuNPs stabilisées par des thiols organiques modulant leurs propriétés de surface. Les applications visent la catalyse et le domaine biomédical, impliquant un contrôle poussé des nanoobjets introduits. Les synthèses des AuNPs organiques sont développées à partir de la méthode de Brust, avec le 4-hydroxythiophénol et le 4-méthylthiophénol. Elles conduisent à des nanoparticules hybrides stables d’environ 2 nm. Les fractions de purifications sont analysées par MET, UV-visible, RMN et ATG, caractérisant le cœur d’or, la couche de ligands et leurs interactions. Il apparaît que les AuNPs hybrides présentent un assemblage de thiols en monocouche ou en multicouche. Une nouvelle voie de synthèse directe en phase aqueuse d’AuNPs d’environ 4 nm, stabilisées par le 4-hydroxythiophénol, est ensuite développée. Ces AuNPs sont purifiées par dialyse et caractérisées par MET, UV-visible, RMN et ATG. Les fractions d’AuNPs organiques, présentant différents états de surface, sont imprégnées dans la silice mésoporeuse SBA-15. Les isothermes d’adsorption et la manométrie sous diazote indiquent une bonne dispersion des AuNPs et une insertion dans les canaux. Nous introduisons l’exploration d’applications ciblées. L’utilisation des AuNPs organiques lors de l'oxydation d’alcènes tend à améliorer la sélectivité du sel de manganèse catalytique. Pour le domaine biomédical, les AuNPs aqueuses présentent une bonne dispersibilité en milieux aqueux biocompatibles. Les premiers tests in-vitro sur des cellules de sarcomes humains montrent une faible cytotoxicité et une bonne pénétration intracellulaire. / This Ph.D. work developed the controlled synthesis and purification of hybrid gold nanoparticles AuNPs, stabilized by organic thiols that are tuning their surface properties. The targeted applications are the catalysis and in the biomedical field, requiring a thorough control of the introduced nanoobjects. Syntheses of the organic AuNPs were developed from the Brust method, using 4-hydroxymercaptophenol or 4-methylmercaptophenol, leading to stable hybrid gold nanoparticles of size 2 nm. Purified fractions were characterized using TEM, UV-visible, NMR and TG analysis, issuing key data about the gold core, the organic layer and their interactions. Among the different fractions of AuNPs, the organic thiol ligands appeared to be assembled either as a monolayer or a multilayer pattern. A new direct route for synthesis of aqueous AuNPs of size 4 nm, stabilized by 4-hydroxymercaptophenol, has been developed. The AuNPs were purified using dialysis and characterized by TEM, UV-visible, NMR and TG analysis. Organic AuNPs, exhibiting different surface properties, were impregnated into SBA-15 mesoporous silica. Adsorption isotherms and nitrogen adsorption/desorption studies were in good agreement with the homogeneous distribution of AuNPs and the significant incorporation into the porosity. Finally, exploration of the targeted applications was started. The use of organic AuNPs for alkene oxidation tends to improve the selectivity of manganese salt catalyst. In the biomedical field, the aqueous AuNPs exhibited good dispersibility into biocompatible aqueous solvents. First in-vitro assays involving human sarcoma cells line showed limited cytotoxicity and good cellular uptake.
42

Equilibria in Multiplayer Games Played on Graphs

Goeminne, Aline 27 April 2021 (has links) (PDF)
Today, as computer systems are ubiquitous in our everyday life, there is no need to argue that their correctness is of capital importance. In order to prove (in a mathematical sense) that a given system satisfies a given property, formal methods have been introduced. They include concepts such as model checking and synthesis. Roughly speaking, when considering synthesis, we aim at building a model of the system which is correct by construction. In order to do so, models are mainly borrowed from game theory. During the last decades, there has been a shift from two-player qualitative zero-sum games (used to model antagonistic interactions between a system and its environment) to multiplayer quantitative games (used to model complex systems composed of several agents whose objectives are not necessarily antagonistic). In the latter setting, the solution concepts of interest include numerous equilibria, such as Nash equilibrium (NE) and subgame perfect equilibrium (SPE). While the existence of equilibria is widely studied, it is also well known that several equilibria may coexist in the same game. Nevertheless, some equilibria are more relevant than others. For example, if we consider a game in which each player aims at satisfying a given qualitative objective, it is possible to have both an equilibrium in which no player satisfies his objective and another one in which each player satisfies it. In this case one prefers the latter equilibrium which is more relevant.In this thesis, we focus on multiplayer turn-based games played on graphs either with qualitative or quantitative objectives. Our contributions are twofold: (i) we provide equilibria characterizations and (ii) we use these characterizations to solve decision problems related to the existence of relevant equilibria; and characterize their complexities. Firstly, we provide a characterization of a weaker notion of SPE (weak SPE) in multiplayer games with omega-regular objectives based on the payoff profiles which are realizable by a weak SPE. We then adopt another point of view by characterizing the outcomes of equilibria instead of their payoff profiles. In particular we focus on weak SPE outcome characterization. As for some kinds of games (e.g. multiplayer quantitative Reachability games), weak SPEs and SPEs are equivalent, this characterization is useful in order to study SPEs in these games.Secondly, we use those different equilibrium characterizations to provide the exact complexity classes of different decision problems related to the existence of relevant equilibria. We mainly focus on the constrained existence problem: if each player aims at maximizing his gain, this problem asks whether there exists an equilibrium such that each resulting player’s gain is greater than a threshold (one per player). We also consider variants of relevant equilibria based on the social welfare and the Pareto optimality of the players’ payoff. In this way, we prove the exact complexity classes for (i) the weak SPE constrained existence problem in multiplayer games with classical qualitative objectives such as Büchi, co-Büchi and Safety and (ii) the NE and SPE constrained existence problems (and variants) for qualitative and quantitative reachability games. In the latter case, the upper bounds on the required memory for such relevant equilibria are studied and proved to be finite. Studying memory requirements of strategies is important since with the synthesis process those strategies have to be implemented.Finally, we consider multiplayer, non zero-sum, turn-based timed games with qualitative Reachability objectives together with the concept of SPE. We prove that the SPE constrained existence problem is EXPTIME-complete for qualitative Reachability timed games. In order to obtain an EXPTIME algorithm, we proceed in different steps. In the first step, we prove that the game variant of the classical region graph is a good abstraction for the SPE constrained existence problem. In fact, we identify conditions on bisimulations under which the study of SPE in a given game can be reduced to the study of its quotient. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
43

Characterizing the semantics of terminological cycles in ALN using finite automata

Küsters, Ralf 19 May 2022 (has links)
The representation of terminological knowledge may naturally lead to terminological cycles. In addition to descriptive semantics, the meaning of cyclic terminologies can also be captured by fixed-point semantics, namely, greatest and least fixed-point semantics. To gain a more profound understanding of these semantics and to obtain inference algorithms as well as complexity results for inconsistency, subsumption, and related inference tasks, this paper provides automata theoretic characterizations of these semantics. More precisely, the already existing results for FL₀ are extended to the language ALN, which additionally allows for primitive negation and number-restrictions. Unlike FL₀, the language ALN can express inconsistent concepts, which makes non-trivial extensions of the characterizations and algorithms necessary. Nevertheless, the complexity of reasoning does not increase when going from FL₀ to ALN. This distinguishes ALN from the very expressive languages with fixed-point operators proposed in the literature. It will be shown, however, that cyclic ALN-terminologies are expressive enough to capture schemata in certain semantic data models.
44

<strong>Microstructural evolution of low melting temperature Tin-rich solder alloys </strong>

Amey Avinash Luktuke (16527465) 12 July 2023 (has links)
<p>  </p> <p>Due to miniaturization of electronic devices new electronic packaging strategies, such as Heterogeneous Integration Packaging (HIP), are being developed. In HIP, the space in the package is strategically mapped out to maximize the placement of components including all types of materials. Thus, there is a need to develop and understand the behavior of lower-melting point metallic interconnects as they will be located next to lower melting point materials, such as polymers. </p> <p>The composition of alloying elements in Sn-rich solder plays a pivotal role in determining the microstructural properties of the solder joint. However, the complex mechanisms governing the solidification processes of Sn-In, and Sn-Bi alloys are still not fully understood. Furthermore, the experimental characterization of phase formation poses significant challenges.</p> <p>This dissertation focuses on understanding microstructural evolution in Sn-In and Sn-Bi alloys during reflow. A systematic approach to characterizing the microstructure of alloys was developed, utilizing electron microscopy, non-destructive x-ray tomography and diffraction techniques, ranging from lab-scale to synchrotron experiments. The influence of In addition on microstructure was correlated with the mechanical behavior obtained using nanoindentation. The experimental understanding was further correlated with the Density Functional Theory (DFT) calculations. To study the Sn-Bi microstructures, the effect of experimental parameters, such as the cooling rate during solidification was elucidated. A 4D study was conducted, involving the analysis of 3D microstructures along with time evolution, to gain a comprehensive understanding of the solidification dynamics using synchrotron white beam tomography. For the first time, we observed a regular pyramidal morphology of Bi forming in the solder alloy. The 4D analysis provided crucial insights into morphology formation, growth kinetics, defect formation during solidification. The crystallographic analysis unraveled unique insights into the solid-liquid interface stability for semi-metals. Furthermore, the simultaneous Energy Dispersive Diffraction (EDD) analysis yielded a deeper understanding into the phase formation and lattice strain evolution. A fundamental relationship between the diffraction intensity and phase fractions, from imaging, was obtained. The experimental methodology developed in this work has the potential to be extended to investigate a wide range of alloy solidification mechanisms, enabling a deeper understanding of these materials.</p>
45

Characterization of 3D printed polyester scaffolds modified by nano-hydroxyapatite for bone tissue engineering

Chen, Weitong 06 August 2021 (has links)
Characterization of 3D printed polyester scaffolds modified by nano-hydroxyapatite for bone tissue engineering
46

Very High Frequency Integrated POL for CPUs

Hou, Dongbin 10 May 2017 (has links)
Point-of-load (POL) converters are used extensively in IT products. Every piece of the integrated circuit (IC) is powered by a point-of-load (POL) converter, where the proximity of the power supply to the load is very critical in terms of transient performance and efficiency. A compact POL converter with high power density is desired because of current trends toward reducing the size and increasing functionalities of all forms of IT products and portable electronics. To improve the power density, a 3D integrated POL module has been successfully demonstrated at the Center for Power Electronic Systems (CPES) at Virginia Tech. While some challenges still need to be addressed, this research begins by improving the 3D integrated POL module with a reduced DCR for higher efficiency, the vertical module design for a smaller footprint occupation, and the hybrid core structure for non-linear inductance control. Moreover, as an important category of the POL converter, the voltage regulator (VR) serves an important role in powering processors in today's electronics. The multi-core processors are widely used in almost all kinds of CPUs, ranging from the big servers in data centers to the small smartphones in almost everyone's pocket. When powering multiple processor cores, the energy consumption can be reduced dramatically if the supply voltage can be modulated rapidly based on the power demand of each core by dynamic voltage and frequency scaling (DVFS). However, traditional discrete voltage regulators (VRs) are not able to realize the full potential of DVFS since they are not able to modulate the supply voltage fast enough due to their relatively low switching frequency and the high parasitic interconnect impedance between the VRs and the processors. With these discrete VRs, DVFS has only been applied at a coarse timescale, which can scale voltage levels only in tens of microseconds (which is normally called a coarse-grained DVFS). In order to get the full benefit of DVFS, a concept of an integrated voltage regulator (IVR) is proposed to allow fine-grained DVFS to scale voltage levels in less than a microsecond. Significant interest from both academia and industry has been drawn to IVR research. Recently, Intel has implemented two generations of very high frequency IVR. The first generation is implemented in Haswell processors, where air core inductors are integrated in the processor's packaging substrate and placed very closely to the processor die. The air core inductors have very limited ability in confining the high frequency magnetic flux noise generated by the very high switching frequency of 140MHz. In the second generation IVR in Broadwell processors, the inductors are moved away from the processor substrate to the 3DL PCB modules in the motherboard level under the die. Besides computers, small portable electronics such as smartphones are another application that can be greatly helped by IVRs. The smartphone market size is now larger than 400 billion US dollars, and its power consumption is becoming higher and higher as the functionality of smartphones continuously advances. Today's multi-phase VR for smartphone processors is built with a power management integrated circuit (PMIC) with discrete inductors. Today's smartphone VRs operate at 2-8MHz, but the discrete inductor is still bulky, and the VR is not close enough to the processor to support fine-grained DVFS. If the IVR solution can be extended to the smartphone platform, not only can the battery life be greatly improved, but the total power consumption of the smartphone (and associated charging time and charging safety issues) can also be significantly reduced. Intel's IVR may be a viable solution for computing applications, but the air core inductor with un-confined high-frequency magnetic flux would cause very severe problems for smartphones, which have even less of a space budget. This work proposes a three-dimensional (3D) integrated voltage regulator (IVR) structure for smartphone platforms. The proposed 3D IVR will operate with a frequency of tens of MHz. Instead of using an air core, a high-frequency magnetic core without an air gap is applied to confine the very high frequency flux. The inductor is designed with an ultra-low profile and a small footprint to fit the stringent space requirement of smartphones. A major challenge in the development of the very high frequency IVR inductor is to accurately characterize and compare magnetic materials in the tens of MHz frequency range. Despite the many existing works in this area, the reported measured properties of the magnetics are still very limited and indirect. In regards to permeability, although its value at different frequencies is often reported, its saturation property in real DC-biased working conditions still lacks investigation. In terms of loss property, the previous works usually show the equivalent resistance value only, which is usually measured with small-signal excitation from an impedance/network analyzer and is not able to represent the real magnetic core loss under large-signal excitation in working conditions. The lack of magnetic properties in real working conditions in previous works is due to the significant challenges in the magnetic characterization technique at very high frequencies, and it is a major obstacle to accurately designing and testing the IVR inductors. In this research, an advanced core loss measurement method is proposed for very high frequency (tens of MHz) magnetic characterization for the IVR inductor design. The issues of and solutions for the permeability and loss measurement are demonstrated. The LTCC and NEC flake materials are characterized and compared up to 40MHz for IVR application. Based on the characterized material properties, both single-phase and multi-phase integrated inductor are designed, fabricated and experimentally tested in 20MHz buck converters, featuring a simple single-via winding structure, small size, ultra-low profile, ultra-low DCR, high current-handling ability, air-gap-free magnetics, multi-phase integration within one magnetic core, and lateral non-uniform flux distribution. It is found that the magnetic core operates at unusually high core loss density, while it is thermally manageable. The PCB copper can effectively dissipate inductor heat with 3D integration. In addition, new GaN device drivers and magnetic materials are evaluated and demonstrated with the ability to increase the IVR frequency to 30MHz and realize a higher density with a smaller loss. In summary, this research starts with improving the 3D integrated POL module, and then explores the use of the 3D integration technique along with the very high frequency IVR concept to power the smartphone processor. The challenges in a very high frequency magnetic characterization are addressed with a novel core loss measurement method capable of 40MHz loss characterization. The very high frequency multi-phase inductor integrated within one magnetic component is designed and demonstrated for the first time. A 20MHz IVR platform is built and the feasibility of the concept is experimentally verified. Finally, new GaN device drivers and magnetic materials are evaluated and demonstrated with the ability to increase the IVR frequency to 30MHz and realize higher density with smaller loss. / Ph. D.
47

Conjugated Polymer-based Conductive Fibers for Smart Textile Applications

Bashir, Tariq January 2013 (has links)
Electrically conductive or electro-active fibers are the key components of smart and interactive textiles, which could be used in medical, sports, energy, and military applications in the near future. The functionalization of high-performance textile yarns/fibers with conjugated polymers can produce conductive fibers with better electro-mechanical properties, which is difficult with commonly used spinning techniques. In this thesis work, textile-based conductive yarns/fibers were prepared by coating viscose and polyester (PET) yarns with the conjugated polymer PEDOT. For coating purposes, an efficient technique called chemical vapor deposition (CVD) was used, which is a solventless technique and can produce PEDOT polymer layers with high conductivity values. The polymerization of EDOT monomer vapors and coating of oxidant (FeCl3 or FepTS) enriched viscose and PET yarns took place simultaneously. The PEDOT-coated viscose and polyester yarns showed relatively high conductivity values, which could be sufficient for many electronic applications. The polymerization process and the quality of PEDOT polymer strongly depends on different reaction conditions. In this research work, the impact of most of these reaction parameters on the electrical, mechanical, and thermal properties of PEDOT-coated conductive yarns was considered separately. Under specific reaction conditions, it was found that viscose fibers were successfully coated with PEDOT polymer and showed rather high electrical conductivity (≥ 15 S/cm). However, due to the acid hydrolysis of viscose fibers in FeCl3 solutions, the mechanical properties were drastically reduced. In order to improve the mechanical properties of conductive yarns, a relatively stable and chemical-resistant substrate (PET) was coated with PEDOT polymer. Comparative studies between PEDOT-coated viscose and PET conductive yarns showed that the electrical and mechanical properties were enhanced by changing the substrate material. Later on, PEDOT-coated conductive fibers were treated with silicone elastomer solution and due to the thin silicone layers, the hydrophobic properties, flexibility, and durability of coated yarns was improved. Furthermore, a novel electrical resistance-measuring setup was developed, which can be used not only for fibers but also for fabric structures. The electrical characterization of PEDOT-coated conductive yarns showed that it can be used effectively for sensitive fibers without damaging their surface morphology. Finally, the use of conductive yarns as stretch sensors was evaluated. For this purpose, small rectangular knitted patches of conductive yarns were prepared and then the change in electrical resistance values at different extension percentages (5–50%) was investigated. The constant variations in electrical resistance values at different extension and relaxation cycles for longer periods of time revealed that the conductive yarns produced have the potential to be used as stretch sensors for monitoring of vital signs in medical and sports applications. / <p>Thesis for the Degree of Doctor of Philosophy to be presented on March 08, 2013, 10.00 in KA-salen, Kemigården 4, Chalmers University of Technology, Gothenburg</p>
48

Micro modulateur spatial de lumière transmissif pour modulation de phase et d’amplitude / Transmissive micro spatial light modulator for phase and amplitude modulation

Abelard, Clément 20 November 2018 (has links)
Le LETI possède un savoir-faire permettant de réaliser des micro modulateurs spatiaux de lumière (Spatial Light Modulators, SLMs) réalisés en technologie microélectronique sur silicium, ayant des très grandes résolutions et de très petits pas de pixels. Le LETI souhaite utiliser une technologie LCD particulière (la technologie IPS) dont d’une part les performances électro-optiques dans le domaine des micro-écrans ne sont pas connues mais d’autre part permet de garder des coûts réduits et de réduire le nombre d’étapes de fabrication. L’objectif de cette thèse est d’évaluer sur la base de simulations puis de réalisations techniques, les performances d’un micro-SLM IPS utilisé en modulation de phase et d’amplitude.Les recherches effectuées au cours de cette thèse portent sur 4 axes d’études. Le premier axe consiste à la recherche et à l’essai d’un logiciel spécifique (LCDMaster) permettant de simuler des cellules à cristaux liquides ainsi que des électrodes flottantes. Le second axe consiste à étudier en fonction du design du pixel et des différents modes d’alignements des cristaux liquides (Homogène, vertical et twisté) avec un pilotage de type IPS, les performances en modulation de phase. Les meilleurs résultats sont obtenus pour un alignement vertical fournissant un déphasage de 2 Pi. De plus, les performances d’un dispositif d’optique adaptative intégrant le SLM étudié ont été investiguées. Le troisième axe d’étude, consiste avec le même logiciel à investiguer sur les performances d’un SLM à cristaux liquide avec un pilotage de type IPS utilisant un alignement homogène en modulation d’amplitude (étude statique et dynamique). Cette étude permet également d’étudier les possibilités de diminution du temps de réponse de la cellule. Cette étude a aboutie à deux designs de SLM. Le premier design avec deux niveaux d’électrodes séparés par un isolant permettant de reproduire un effet type « cage de faraday ». La seconde a permis de diminuer de manière drastique le temps de réponse. Le quatrième axe de recherche consiste à tester des prototypes basés sur ces deux designs pour vérifier les performances obtenues en simulation grâce à un banc de caractérisation électro-optique. Des résultats concordants ont étés obtenus et de nouveaux types de SLM à pilotage IPS proposant un temps de rafraichissement rapides se rapprochant de l’état de l’art ont donc pu être désignés et caractérisés. / LETI possesses an expertise allowing to realize Spatial Light Modulators (SLMs) made in microelectronic technology on silicon, having very high resolutions and very small pixel steps. LETI wishes to use a specific LCD technology (IPS technology), on the one hand the electro-optical performances in the field of micro-display had to be investigated but on the other hand allows to keep costs down and reduce the number of manufacturing steps. The objective of this thesis is to evaluate on the basis of simulations and technical achievements, the performance of a micro-SLM IPS used in phase modulation and amplitude.Our investigations have been carried out on four major areas of study. The first axis is the search and testing of a specific software (LCDMaster) to simulate liquid crystal cells and floating electrodes. The second axis according to different designs of pixel and the different liquid crystal alignment modes (Homogeneous, vertical and twisted) with an IPS type control, to investigate the performances in modulation phase. The best results were obtained for a vertical alignment providing a phase shift of 2π. In addition, the performance of an adaptive optics device integrating the studied SLM has been investigated. The third axis of study focused on the performance investigation of a liquid crystal SLM with an IPS-type control using a homogeneous alignment in amplitude modulation (static and dynamic study). This study also makes it possible to study the possibilities of reducing the response time of the cell. It resulted in two SLM designs. The first design with two levels of electrodes separated by an insulator to reproduce a Faraday type effect. The second has drastically reduced the response time. The fourth area of research consists in testing prototypes based on these two designs to validate the performances obtained in simulation. Concordant results have been obtained and new types of IPS-controlled SLMs with state-of-the-art refreshing times have thus been designated and characterized.
49

Influência das substâncias húmicas de diferentes massas molares na coagulação, floculação e sedimentação no tratamento de água / Influence of different molecular weight of humic substances in the coagulation, flocculation and sedimentation in water treatment

Campos, Sandro Xavier de 10 December 2004 (has links)
Neste trabalho estudou-se a influência das substâncias húmicas (SH) extraídas de turfa, com diferentes massas molares, utilizadas para a preparação de águas com cor de 100 uH ± 5 uH, nos ensaios de coagulação, floculação e sedimentação no tratamento de água. Foram realizadas caracterizações das SH por meio das técnicas de ultrafiltração (UF), análise elementar (AE), ultravioleta/visível (UV/Vis), infravermelho (IF), ressonância magnética nuclear de C13 (RMN de C13), ressonância paramagnética eletrônica (EPR). Essas caracterizações demonstraram que as frações de menor massa molar (30 - 100 kDa e <30 kDa), obtidas por UF, apresentaram uma maior concentração de grupos contendo oxigênio, enquanto que a fração de maior massa molar (>100 kDa) e a contendo todas as massas molares juntas (filtrada apenas em membrana com tamanho de poro de 0,45 &#956m) apresentaram maior concentração de grupamentos aromáticos. Verificou-se também que nas frações de menor massa molar (30 - 100 kDa e <30 kDa) a porcentagem de ácidos fúlvicos é maior do que a de ácidos húmicos. Nas frações de maior massa molar (> 100kDa e filtrada em membrana com tamanho de poro de 0,45 &#956m) ocorreu o contrário. Os ensaios de coagulação, floculação e sedimentação realizados com águas preparadas com as diferentes frações de diferentes massas molares, mostraram que quanto maior a massa molar, maior é a facilidade de coagulação, floculação e sedimentação, o que proporciona maior eficiência na remoção da cor aparente. Os diagramas de coagulação obtidos para o coagulante sulfato de alumínio (Al2(SO4)3 . 14,3 H2O) mostraram que independente da massa molar, a região de pH ótimo de coagulação esteve entre 6 e 7, sendo que a remoção da cor aparente foi crescente com a diminuição da velocidade de sedimentação (Vs= 3,0, 1,5 e 0,5 cm/min). Com a diminuição da massa molar houve um aumento na dosagem de Al2(SO4)3 . 14,3 H2O necessária para se obter curvas de remoção da cor aparente iguais às obtidas com a água preparada com a fração de maior massa molar (> 100 kDa). Os ensaios de coagulação, floculação, sedimentação e filtração demonstraram boa reprodutibilidade em relação aos resultados de remoção de cor aparente obtidos para a confecção dos diagramas de coagulação. Após a filtração foi verificado que os valores da cor aparente não foram detectados pela técnica de medição da cor utilizada, para todas as águas de estudo, com exceção da água preparada com a fração de menor massa molar (<30 kDa). Conclui-se que, quanto menor a massa molar, maior a porcentagem de ácidos fúlvicos presentes e maior a concentração de grupamentos com oxigênio ligado. Assim, será necessária uma maior dosagem de coagulante Al2(SO4)3 . 14,3 H2O para que ocorra uma remoção eficiente da cor. / The present thesis deals with the influence of humic substances (HS) on coagulation, flocculation and sedimentation tests for water treatment. These substances were extracted from peat, had different molecular weight and were used for the preparation of water with 100 ± 5 uH color. Characterizations of HS were performed by the following techniques ultra filtration (UF), elemental analysis (EA), ultraviolet/ visible (UV/Vis), infrared (IF), C13 nuclear magnetic resonance (NMR of C13) and electron paramagnetic resonance (EPR). Such characterizations showed that fractions of smaller molecular weight (30 - 100 kDa and < 30 kDa) obtained by UF presented a higher concentration of groups containing oxygen, while the fraction with the largest molecular weight (>100 kDa) and the one containing all the molecular weight together (filtered only in membrane with pore size of 0,45 &#956m) presented a higher concentration of aromatic groupings. It was also possible to verify that in the fractions with smaller molecular weight (30 - 100 kDa e <30 kDa) the percentage of fulvic acids was higher than the one of humic acids . However the opposite occurred of larger molecular weight (>100 kDa and filtered in membrane with pore size of 0,45 &#956m). The tests of coagulation, flocculation and sedimentation conducted with waters prepared with different fractions of different molecular weight showed that the larger the molecular weight, the easier the coagulation, flocculation and sedimentation, resulting in higher efficiency in the removal of the apparent color. The coagulation diagrams obtained for aluminum sulphate (Al2(SO4)3 .14,3 H2O) showed that independently of the molecular weight, the region with optimum pH for coagulation was between 6 and 7 and the removal of the apparent color increased with the decrease in the sedimentation velocity (Vs= 3,0, 1,5 e 0,5 cm/min). Due to the decrease in the molecular weight there was as increase in the dosage of Al2(SO4)3 .14,3 H2O necessary to obtain curves of the removal of the apparent color similar to the ones obtained with the water prepared with the fraction of the largest molecular weight (> 100 kDa). Tests of coagulation, flocculation, sedimentation and filtration showed good reproducibility in relation to the results of removal of apparent color, obtained for the construction of coagulation diagrams. After filtration it was possible to verify that the values of apparent color were not detected by the technique of color measurement utilized for all the waters studied, except for the water prepared with the fraction of the smallest molecular weight (< 30 kDa). It was possible concluded that the smaller the molecular weight, the higher the percentage of present fulvic acids and the higher the concentration of groupings with bond oxygen. Thus a higher dosage of coagulant Al2(SO4)3 .14,3 H2O will be necessary for an efficient removal of color.
50

Etude du décolmatage, par procédés chimiques et biologiques, des membranes échangeuses d'ions utilisées en électrodialyse dans le domaine agroalimentaire / Cleaning study of ion-exchange membranes used in electrodialysis for food industry by chemical and biological processes

Bdiri, Myriam 30 October 2018 (has links)
L’électrodialyse (ED) est principalement basée sur l’action spécifique des membranes échangeuses d’ions (MEIs) et est largement répandue en industrie agroalimentaire pour la stabilisation tartrique des vins, la désacidification et le traitement des jus de fruits, la déminéralisation du lactosérum ou l’élimination et le fractionnement des protéines du lait. Le colmatage organique, accentué par la complexité de composition des effluents alimentaires et leur richesse en composés phénoliques, représente un facteur majeur de limitation de l’efficacité des procédés et des performances des MEIs. Ce phénomène provoque une diminution de la sélectivité de membranes, une augmentation de leur résistance électrique et réduit le rendement énergétique du procédé conduisant à des pertes économiques en industrie. Cette étude consiste principalement à étudier le décolmatage de MEIs par procédés chimiques et biologiques. Des lots de membranes échangeuses de cations (MECs) et d’anions (MEAs) neuves (1 lot de MEC et 1 lot de MEA) et usées (3 lots de MECs et 2 lots de MEAs) à différentes durées d’utilisation en ED dans l’industrie agroalimentaire –application confidentielle- ont été étudiés. L’ensemble des échantillons ont préalablement été caractérisés pour détermination des paramètres physicochimiques (capacité d’échange (CE), épaisseur (Tm), conductivité électrique (km), angle de contact (θ), teneur en eau (WC) ainsi que la fraction volumique de la solution inter-gel (f2) résultant de l’exploitation du modèle microhétérogène), de structure et morphologiques par spectroscopie IR-TF, microscopie optique, microscopie électronique à balayage et mécaniques par essais de traction. Les effets directs et indirects (causés par les opérations de lavage régulières en industrie) du colmatage ainsi que l’anisotropie des propriétés mécaniques de membrane ont été mis en évidence. Des méthodes de nettoyage non agressives et respectueuses de l’environnement ont été expérimentées en mode statique en ex-situ : Solutions salines (NaCl à 35 g.L-1 et eau de mer reconstituée), solution hydro-alcoolique (mélange eau-éthanol 12%, pH=3,5) et solutions biologique utilisant 3 catégories d’agents enzymatiques (Rohalase BX-BXL, β-glucanase / Corolase 7089, endo-peptidase / Tyrosinase, polyphenol-oxydase) dont les conditions opératoires d’activité enzymatiques optimale ont été déterminées. L’évolution de CE, km, θ et f2 ont été suivis en fonction de la durée de nettoyage. Les solutions salines ont un effet négligeable sur le nettoyage en profondeur mais restent efficaces pour le nettoyage de surface. Cependant, l’application de la solution hydro-alcoolique et des solutions d’enzymes se sont avérées être efficaces pour le décolmatage interne et externe et parviennent à rétablir significativement les paramètres suivis. Il a été démontré que les composés phénoliques, principaux constituants des effluents traités, sont en majeure partie responsables du colmatage des MEIs. Ceux-ci forment des nanoparticules colloïdales denses, non perméables aux ions dans les méso- et macropores des MEIs et ne pénètrent pas dans ses micropores. Une modification du modèle microhétérogène selon cette hypothèse a permis de fournir une interprétation adéquate du km et de modéliser la modification structurale de la phase inter-gel engendrée par les mécanismes de colmatages de polyphénols et expliquer les raisons de diminution du facteur f2app. Une méthode d’extraction utilisant un mélange de solvants (25%V/V, acétone/méthanol/isopropanol/eau) a été mise au point et a permis d’extraire certains composés phénoliques de différents lots de MECs et MEAs usées et ont été identifiés par chromatographie liquide à haute performance. Il a été démontré que les interactions entre les composés phénoliques et la matrice polymère étaient principalement régies par l’empilement des cycles aromatiques et des interactions électrostatiques du type CH-pi et pi-pi ainsi que les liaisons hydrogènes / Conventional electrodialysis (ED) is mainly based on the specific action of ion exchange membranes (IEMs) and is widely used in food industry for tartaric stabilization of wines, deacidification and treatment of fruit juices, demineralization of whey or elimination and fractionation of milk proteins. The organic fouling, accentuated by the complex composition of the food effluents and their richness in phenolic compounds, represents a major limitative factor of the process efficiency and the IEMs performance. This phenomenon causes a decrease in the selectivity of membranes, an increase in their electrical resistance and reduces the energy efficiency of the process leading to economic losses in industry. This study mainly consists in studying the IEMs cleaning by chemical and biological methods. Two batches of new membranes (cation- (CEMs) and anion-exchange membranes (AEMs)) and five batches of used ones (3 CEMs and 2 AEM) with different durations of use in ED units in food industry -confidential application- have been studied. All the samples have been previously characterized to determine their physicochemical parameters (ion-exchange capacity (IEC), thickness (Tm), electrical conductivity (km), contact angle (θ), water content (WC) and the volume fraction of the inter-gel solution (f2) resulting from the study of the micro heterogeneous model), structure and morphology by FTIR spectroscopy, optical microscopy, scanning electron microscopy and mechanical by tensile strength tests. The direct and indirect effects (caused by the regular cleaning operations in industry) of fouling as well as the anisotropy of the membranes mechanical properties have been highlighted. Non-aggressive and environmentally friendly cleaning methods have been experimentally tested in ex-situ static mode: Saline solutions (35 g.L-1 NaCl and reconstituted seawater), hydro-alcoholic solution (12% water-ethanol mixture, pH = 3,5) and biological solutions using 3 categories of enzymatic agents (Rohalase BX-BXL, β-glucanase / Corolase 7089, endo-peptidase / Tyrosinase, polyphenol oxidase) whose operating conditions of optimal enzymatic activity have been determined. The evolution of IEC, km, θ and f2 were followed in function of the cleaning duration. Saline solutions have a negligible effect on intern cleaning but remain efficient for extern cleaning. However, the application of the hydro-alcoholic solution and enzyme solutions have been found to be efficient for both intern and extern cleaning and led to significant recoveries of the studied parameters. It has been shown that phenolic compounds, the principal constituents of treated effluents, are mainly responsible for MEIs fouling. Apparently, they form dense colloidal nanoparticles not permeable for ions within membrane meso- and macropores, not penetrating into micropores. A modification of the micro heterogeneous model under this assumption allowed an adequate interpretation of km and the modelization of structural modifications of the inter-gel phase generated by the fouling mechanisms by polyphenols and explained the reasons why the f2app decreases. An extraction method using a mixture of solvents (25% V/V, acetone/methanol/ isopropanol/water) was developed and made it possible to extract certain phenolic compounds from different batches of used CEMs and AEMs that were identified by high performance liquid chromatography. It has also been demonstrated that the interactions between the phenolic compounds and the polymer matrix are mainly governed by the stacking of aromatic rings and electrostatic interactions of the CH-pi and pi-pi type as well as the hydrogen bonds

Page generated in 0.1397 seconds