• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing the semantics of terminological cycles in ALN using finite automata

Küsters, Ralf 19 May 2022 (has links)
The representation of terminological knowledge may naturally lead to terminological cycles. In addition to descriptive semantics, the meaning of cyclic terminologies can also be captured by fixed-point semantics, namely, greatest and least fixed-point semantics. To gain a more profound understanding of these semantics and to obtain inference algorithms as well as complexity results for inconsistency, subsumption, and related inference tasks, this paper provides automata theoretic characterizations of these semantics. More precisely, the already existing results for FL₀ are extended to the language ALN, which additionally allows for primitive negation and number-restrictions. Unlike FL₀, the language ALN can express inconsistent concepts, which makes non-trivial extensions of the characterizations and algorithms necessary. Nevertheless, the complexity of reasoning does not increase when going from FL₀ to ALN. This distinguishes ALN from the very expressive languages with fixed-point operators proposed in the literature. It will be shown, however, that cyclic ALN-terminologies are expressive enough to capture schemata in certain semantic data models.
2

Nitrogen-containing Carbonaceous Materials for Electrochemical Oxygen Reduction Reaction

Wu, Bin 03 January 2024 (has links)
Der steigende weltweite Energiebedarf treibt die Entwicklung sauberer Energiequellen voran, die dazu beitragen werden, den Verbrauch fossiler Brennstoffe zu reduzieren. Brennstoffzellen und Metall-Luft-Batterien sind vielversprechende Alternativen, um traditionelle fossile Energie zu ersetzen und durch die Reduzierung von O2 an der Kathode grünen Strom zu erzeugen. Aufgrund der langsamen Reaktionsraten der Sauerstoffreduktionsreaktion (ORR) ist hierfür jedoch elektrokatalytisches Material mit geringen Kosten und hoher Effizienz erforderlich. In den letzten Jahrzehnten wurde eine Vielzahl von Materialien als Nicht-Pt-Katalysatoren getestet, von metallfreien Katalysatoren bis hin zu Katalysatoren auf Übergangsmetallbasis. Aufgrund des mangelnden Verständnisses des Reaktionsmechanismus und der Wechselwirkung zwischen Elektrolyt und Elektrokatalysator befinden sich neue Designs stickstoffhaltiger Katalysatoren auf Kohlenstoffbasis jedoch noch in der Entwicklungsphase. Zu diesem Zweck wurden verschiedene (in situ) spektroskopische und elektrochemische Techniken eingesetzt, um die Wechselwirkung zwischen N-dotiertem Kohlenstoff und Elektrolyten sowie die katalytischen Mechanismen zu verstehen. Darüber hinaus weisen die neu entwickelten Katalysatoren für die ORR eine überlegene elektrokatalytische Leistung auf, die in dieser Dissertation ausführlich diskutiert wird. Die Struktur-Leistungs-Beziehung unserer ORR-N-dotierten Kohlenstoffkatalysatoren wurde gründlich untersucht. Diese Forschung zeigt, wie die Kombination fortschrittlicher Spektroskopietechniken, einschließlich In-situ-Spektroskopie und elektrochemischer Charakterisierung, ein tieferes Verständnis der Katalysator-/Elektrolyt-Wechselwirkung, des katalytischen Mechanismus und der optimierten elektrokatalytischen Leistung stickstoffhaltiger Kohlenstoffmaterialien, ORR-Katalysatoren, insbesondere nanoporöser N-dotierter Kohlenstoff, fördern kann Eisen-Stickstoff-codotierte Kohlenstoffmaterialien. / Increasing global energy demand drives the development of clean energy sources that will help reduce the consumption of fossil fuels. Fuel cells and metal-air batteries are promising alternatives to replace traditional fossil energy to generate green electricity by reducing O2 at the cathode. However, due to sluggish reaction rates of oxygen reduction reaction (ORR), this requires electrocatalytic material with low cost and high efficiency. Over the last few decades, a variety of materials have been tested as non-Pt catalysts, from metal-free catalysts to transition metal-based catalysts. However, due to the lack of understanding of the reaction mechanism and the interaction between electrolyte and electrocatalysts, new designs nitrogen-containing carbon-based catalysts are still under the development stage. To this aim, a variety of (in situ) spectroscopic and electrochemical techniques to understand N-doped carbon electrocatalysts/electrolyte interaction and catalytic mechanisms have been employed. Moreover, the newly-designed catalysts for ORR demonstrate superior electrocatalytic performance which are discussed in detail in this dissertation. The structure-performance relationship for our ORR N-doped carbon catalysts has been thoroughly investigated. This research highlights how the combination of advanced spectroscopy techniques including in situ spectroscopy and electrochemical characterization may promote a deeper understanding of catalyst/electrolyte interaction, catalytic mechanism and optimized electrocatalytic performance of nitrogen-containing carbon materials ORR catalysts, especially nanoporous N-doped carbon and iron-nitrogen-co-doped carbon materials.

Page generated in 0.1391 seconds